Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T21:04:00.790Z Has data issue: false hasContentIssue false

Reduced Activation Alloy Development for Fusion

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Developing materials that resist degradation when exposed to neutrons is a key element in international programs to demonstrate the engineering and economic viability of fusion power. An additional requirement is that these materials exhibit low-induced long-lived radioactivity in order to enhance fusion power's environmental (and economic) attractiveness. This article briefly overviews current efforts to develop reduced activation structural alloys for fusion reactor applications.

A specific objective of the U.S. Fusion Materials Program is that all reactor components will meet the requirements for near-surface burial. Presently, this is interpreted to mean that all radioactive waste should satisfy Part 61 of Title 10 of the U.S. Code of Federal Regulations (10CFR61), prepared by the Nuclear Regulatory Commission (NRC). Specific activity limits are placed on particular long-lived radionuclides, which, when combined with activation calculations for conceptual fusion devices, place constraints on material compositions. Regulation 10CFR61 was prepared to cover low-level waste produced by the fission reactor industry; it has been necessary to extend it, in principle, to include additional radionuclides. Unlike anticipated waste from a fusion industry, only a small fraction of the fission waste stream is activated metals; hence, the applicability of the regulation is questionable. Further analysis of the probable disposal method for fusion wastes is needed, along with consideration of maintenance and decommissioning scenarios.

Type
Fusion Materials
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Doran, D.G., Rowcliffe, A.F., and Mann, F.M., J. Nucl. Mater. 141-143 (1986) p. 1074.CrossRefGoogle Scholar
2.Fetter, S., Cheng, E.T., and Mann, F.M., Fusion Eng. Des. 6 (1988) p. 123.CrossRefGoogle Scholar
3.Doran, D.G., Heinisch, H.L., and Mann, F.M., J. Nucl. Mater. 133-134 (1985) p. 892. See also J.S. Herring, Application of 10CFR61 to Long-Term Fusion Waste Management, Report E.G.& G.-M-36486 (April 8, 1987).CrossRefGoogle Scholar
4.Butterworth, G.J. and Giancarli, L., J. Nucl. Mater. 155-157 (1988) p. 575.CrossRefGoogle Scholar
5.Piet, S.J., J. Nucl. Mater. 141-143 (1986) p. 65.CrossRefGoogle Scholar
6.Dulieu, D., Tupholme, K.W., and Butterworth, G.J., J. Nucl. Mater. 141-143 (1986) p. 1097.CrossRefGoogle Scholar
7.Ruedl, E., Rickerby, D., and Sasaki, T., Fusion Tech. 2 (1984) p. 1029.Google Scholar
8.Fenci, P. and Scheuer, H., J. Nucl. Mater. 155-157 (1988) p. 947.CrossRefGoogle Scholar
9.Bott, A.H., Pickering, F.B., and Butterworth, G.J., J. Nucl. Mater. 141-143 (1986) p. 1088.CrossRefGoogle Scholar
10.Noda, T., Abe, F., Araki, H., and Okada, M., J. Nucl. Mater. 141-143 (1986) p. 1102.CrossRefGoogle Scholar
11.Tamura, M., Hayakawa, H., Tanimura, M., Hishinuma, A., and Kondo, T., J. Nucl. Mater. 141-143 (1986) p. 1067.CrossRefGoogle Scholar
12.Ghoniem, N.M., Shabaik, A., and Youssef, M.Z., in Ferritic Alloys for Use in Nuclear Energy Technologies, edited by Davis, J.W. and Michel, D.J. (TMS-AIME, Warrendale, PA, 1984) p. 201.Google Scholar
13.Brager, H.R., Garner, F.A., Gelles, D.S., and Hamilton, M.L., J. Nucl. Mater. 133 & 134 (1985) p. 907.CrossRefGoogle Scholar
14.Klueh, R.L., Gelles, D.S., and Lechtenberg, T.A., J. Nucl. Mater. 141-143 (1986) p. 1081.CrossRefGoogle Scholar
15.Klueh, R.L., Met. Trans. 20A (1989) p. 463.CrossRefGoogle Scholar
16.Abe, F., Araki, H., Noda, T., and Okada, M., J. Nucl. Mater. 155-157 (1988) p. 656.CrossRefGoogle Scholar
17.Gelles, D.S., “Effects of Irradiation on Low Activation Ferritic Alloys, A Review,” in Reduced Activation Materials for Fusion Reactors, ASTM STP-1047 (Am. Soc. for Testing and Mater., Philadelphia, PA, to be published).Google Scholar
18.Klueh, R.L. and Corwin, W.R., J. Mater. Eng. 11 (1989) p. 135.CrossRefGoogle Scholar
19.Tamura, M., Hayakawa, H., Yoshitake, A., Hishinuma, A., and Kondo, T., J. Nucl. Mater. 155-157 (1988) p. 620.CrossRefGoogle Scholar
20.Klueh, R.L. and Maziasz, P.J., “Reduced Activation Austenitic Stainless Steels: The Fe-Mn-Cr-C System,” in Reduced Activation Materials for Fusion Reactors, ASTM STP-1047 (Am. Soc. for Testing and Mater., Philadelphia, PA, to be published).CrossRefGoogle Scholar
21.Maziasz, P.J. and Klueh, R.L., “Precipitation Sensitivity to Alloy Composition in Fe-Cr-Mn Austenitic Steels Developed for Reduced Activation for Fusion Applications,” in Reduced Activation Materials for Fusion Reactors, ASTM STP-1047 (Am. Soc. for Testing and Mater., Philadelphia, PA, to be published).Google Scholar
22.Garner, F.A., Brager, H.R., Gelles, D.S., and McCarthy, J.M., J. Nucl. Mater. 148 (1988) p. 294.CrossRefGoogle Scholar
23.Garner, F.A., Abe, F., and Noda, T., J. Nucl. Mater. 155-157 (1988) p. 870.CrossRefGoogle Scholar
24.Garner, F.A. and McCarthy, J.M., “An Assessment of Fe-Cr-Mn Austenitic Alloys for Fusion Reactor Service,” in Reduced Activation Materials for Fusion Reactors, ASTM STP-1047 (Am. Soc. for Testing and Mater., Philadelphia, PA, to be published).Google Scholar
25.McCarthy, J.M. and Garner, F.A., J. Nucl. Mater. 155-157 (1987) p. 877.CrossRefGoogle Scholar
26.Peterson, J.R. and Smathers, D.B., J. Nucl. Mater. 141-143 (1986) p. 1113.CrossRefGoogle Scholar
27.Braski, D.N., J. Nucl. Mater. 141-143 (1986) p. 1125. See also Fusion Reactor Materials, Semiannual Progress Report, DOE/ER-0313/4 (August 1988) p. 168.CrossRefGoogle Scholar
28.Diercks, D.R. and Loomis, B.A., J. Nucl. Mater. 141-143 (1986) p. 1117; see also B.A. Loomis, Fusion Reactor Materials, Semiannual Progress Report, DOE/ER0313/6, to be published.CrossRefGoogle Scholar
29.Santos, R. Dos, J. Nucl. Mater. 155-157 (1988) p. 589.CrossRefGoogle Scholar
30.Ohnuki, S., Takahashi, H., Kinoshita, H., and Nagasaki, R., J. Nucl. Mater. 155-157 (1988) p. 935.CrossRefGoogle Scholar
31.Kawanishi, H. and Ishino, S., J. Nucl. Mater. 155-157 (1988) p. 940.CrossRefGoogle Scholar
32.Takahashi, H., Ohnuki, S., Kinoshita, H., Nagasaki, R., and Abe, K., J. Nucl. Mater. 155-157 (1988) p. 982.CrossRefGoogle Scholar
33.Phythian, W.J., Eyre, B.L., and Bacon, D.J., J. Nucl. Mater. 155-157 (1988) p. 982.CrossRefGoogle Scholar
34.Loomis, B.A., Kestel, B.J., Edwards, B.D., and Smith, D.L., Fusion Reactor Materials, Semiannual Progress Report, DOE/ER-0313/5 (May 1989) p. 242.Google Scholar
35.Cannon, N.S., Hamilton, M.L., Ermi, A.M., Gelles, D.S., and Hu, W.L., Fusion Reactor Materials, Semiannual Progress Report, DOE/ER-0313/5 (May 1989) p. 987.Google Scholar
36.Thresh, H.R., Hins, A.G., and Smith, D.L., Fusion Reactor Materials, Semiannual Progress Report, DOE/ER-0313/5 (May 1989) p. 608.Google Scholar
37.Ermi, A.M., in Alloy Development for Irradiation Performance Report, DOE/ER-0045/13 (Sept. 30, 1984) p. 21.Google Scholar
38.Braski, D.N., in Influence of Radiation on Material Properties: 13th International Symposium (Part II), ASTM STP 956 (Am. Soc. for Testing and Mater., Philadelphia, PA, 1987) p. 271.Google Scholar
39.Smith, D.L., Matsui, H., Greenwood, L., and Loomis, B., J. Nucl. Mater. 155-157 (1988) 1359.CrossRefGoogle Scholar
40.Loomis, B.A., Kestel, B.J., Gerber, S.B. and Ayrault, G., J. Nucl. Mater. 141-143 (1986) p. 705.CrossRefGoogle Scholar
41.Loomis, B.A., Lee, R.H., Smith, D.L., and Peterson, J.R., J. Nucl. Mater. 155-157 (1988) p. 631.CrossRefGoogle Scholar
42.Chopra, O.K. and Smith, D.L., J. Nucl. Mater. 155-157 (1988) p. 683.CrossRefGoogle Scholar
43.Borgstedt, H.U., Grundmann, M., Konys, J., and Peric, Z., J. Nucl. Mater. 155-157 (1988) p. 690.CrossRefGoogle Scholar
44.Adelhelm, Ch., Kempf, D., and Nold, E., J. Nucl. Mater. 155-157 (1988) p. 698.CrossRefGoogle Scholar
45.Hubberstey, P. and Roberts, P.G., J. Nucl. Mater. 155-157 (1988) p. 694.CrossRefGoogle Scholar