Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-24T16:56:01.791Z Has data issue: false hasContentIssue false

Recharging lithium battery research with first-principles methods

Published online by Cambridge University Press:  22 March 2011

G. Ceder
Affiliation:
Massachusetts Institute of Technology; [email protected]
G. Hautier
Affiliation:
Massachusetts Institute of Technology; [email protected]
A. Jain
Affiliation:
Massachusetts Institute of Technology; [email protected]
S.P. Ong
Affiliation:
Massachusetts Institute of Technology; [email protected]
Get access

Abstract

Energy storage is a critical hurdle to the success of many clean energy technologies. Batteries with high energy density, good safety, and low cost can enable more efficient vehicles with electrified drive trains, such as hybrid electric vehicles, electric vehicles, and plug-in hybrid electric vehicles. They can also provide energy storage for intermittent energy sources, such as wind and solar. Today, and for the foreseeable future, rechargeable lithium batteries deliver the highest energy per unit weight or volume at reasonable cost. Many of the important properties of battery materials can be calculated with first-principles methods, making lithium batteries fertile ground for computational materials design. In this article, we review the successes and opportunities in using first-principles computations in the battery field. We also highlight some technical challenges facing the accurate modeling of battery materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Aydinol, M.K., Kohan, A.F., Ceder, G., Cho, K., Joannopoulos, J., Phys. Rev. B 56, 1354 (1997).CrossRefGoogle Scholar
2.Zhou, F., Cococcioni, M., Marianetti, C.A., Morgan, D., Ceder, G., Phys. Rev. B 70, 235121 (2004).CrossRefGoogle Scholar
3.Dudarev, S.L., Savrasov, S.Y., Humphreys, C.J., Sutton, A.P., Phys. Rev. B 57, 1505 (1998).CrossRefGoogle Scholar
4.Heyd, J., Scuseria, G.E., Ernzerhof, M., J. Chem. Phys. 118, 8207 (2003).CrossRefGoogle Scholar
5.Krukau, A.V., Vydrov, O.A., Izmaylov, A.F., Scuseria, G.E., J. Chem. Phys. 125, 224106 (2006).CrossRefGoogle Scholar
6.Chevrier, V.L., Ong, S.P., Armiento, R., Chan, M.K.Y., Ceder, G., Phys. Rev. B 82, 075122 (2010).CrossRefGoogle Scholar
7.Kulik, H., Cococcioni, M., Scherlis, D., Marzari, N., Phys. Rev. Lett. 97, 1 (2006).CrossRefGoogle Scholar
8.Zhou, F., Cococcioni, M., Marianetti, C.A., Morgan, D., Ceder, G., Phys. Rev. B 70, 235121 (2004).CrossRefGoogle Scholar
9.Wang, L., Maxisch, T., Ceder, G., Phys. Rev. B 73, 1 (2006).Google Scholar
10.Zhou, F., Cococcioni, M., Kang, K., Ceder, G., Electrochem. Commun. 6, 1144 (2004).CrossRefGoogle Scholar
11.Wolfenstine, J., Allen, J., J. Power Sources 142, 389 (2005).CrossRefGoogle Scholar
12.Arroyo-de Dompablo, M., Armand, M., Tarascon, J., Amador, U., Electrochem. Commun. 8, 1292 (2006).CrossRefGoogle Scholar
13.Lyness, C., Delobel, B., Armstrong, A.R., Bruce, P.G., Chem. Commun. 4890 (2007).CrossRefGoogle Scholar
14.Bréger, J., Meng, Y.S., Hinuma, Y., Kumar, S., Kang, K., Shao-Horn, Y., Ceder, G., Grey, C.P., Chem. Mater. 18, 4768 (2006).CrossRefGoogle Scholar
15.Morgan, D., Ceder, G., Saïdi, M.Y., Barker, J., Swoyer, J., Huang, H., Adamson, G., Chem. Mater. 14, 4684 (2002).CrossRefGoogle Scholar
16.Yamada, A., Iwane, N., Harada, Y., Nishimura, S., Koyama, Y., Tanaka, I., Adv. Mater. 8501 (2010).Google Scholar
17.Hwang, B.J., Tsai, Y.W., Carlier, D., Ceder, G., Chem. Mater. 15, 3676 (2003).CrossRefGoogle Scholar
18.Van Der Ven, A., Aydinol, M.K., Ceder, G., J. Electrochem. Soc. 145, 2149 (1998).CrossRefGoogle Scholar
19.Bhattacharya, J., Van Der Ven, A., Phys. Rev. B 81 (2010).CrossRefGoogle Scholar
20.Morgan, D., Van Der Ven, A., Ceder, G., Electrochem. Solid-State Lett. 7, A30 (2004).CrossRefGoogle Scholar
21.Van Der Ven, A., Ceder, G., Mater. Sci. 3, 5 (2000).Google Scholar
22.Jonsson, H., Mills, G., Jacobsen, K.W., in Classical and Quantum Dynamics in Condensed Phase Simulations, Berne, B.J., Ciccotti, G., Coker, D.F., Eds. (World Scientific, River Edge, NJ, 1998), pp. 385.CrossRefGoogle Scholar
23.Kang, K., Ceder, G., Phys. Rev. B 74, 1 (2006).Google Scholar
24.Kang, K., Meng, Y.S., Bréger, J., Grey, C.P., Ceder, G., Science 311, 977 (2006).CrossRefGoogle Scholar
25.Levi, M.D., Salitra, G., Markovsky, B., Teller, H., Aurbach, D., Heider, U., Heider, L., J. Electrochem. Soc. 146, 1279 (1999).CrossRefGoogle Scholar
26.Barker, J., Pynenburg, R., Koksbang, R., Saidi, M.Y., Electrochim. Acta 41, 2481 (1996).CrossRefGoogle Scholar
27.McGraw, J., Bahn, C.S., Parilla, P.A., Perkins, J.D., Readey, D.W., Ginley, D.S., Electrochim. Acta 45, 187 (1999).CrossRefGoogle Scholar
28.Fisher, C.A.J., Islam, M.S., Moriwake, H., J. Phys. Soc. Jpn. 79, 59 (2010).CrossRefGoogle Scholar
29.Toyoura, K., Koyama, Y., Kuwabara, A., Oba, F., Tanaka, I., Phys. Rev. B 78, 1 (2008).CrossRefGoogle Scholar
30.Persson, K., Sethuraman, V.A., Hardwick, L.J., J. Phys. Chem. Lett. 1, 1176 (2010).CrossRefGoogle Scholar
31.Ma, X., Kang, B., Ceder, G., J. Electrochem. Soc. 157, A925 (2010).CrossRefGoogle Scholar
32.Nakahara, K., Nakajima, R., Matsushima, T., Majima, H., J. Power Sources 117, 131 (2003).CrossRefGoogle Scholar
33.Malik, R., Burch, D., Bazant, M., Ceder, G., Nano Lett. 10, 4123 (2010).CrossRefGoogle Scholar
34.Amin, R., Maier, J., Balaya, P., Chen, D.P., Lin, C.T., Solid State Ionics 179, 1683 (2008).CrossRefGoogle Scholar
35.Amin, R., Balaya, P., Maier, J., Electrochem. Solid-State Lett. 10, A13 (2007).CrossRefGoogle Scholar
36.Ong, S.P., Wang, L., Kang, B., Ceder, G., Chem. Mater. 20, 1798 (2008).CrossRefGoogle Scholar
37.Kang, B., Ceder, G., Nature 458, 190 (2009).CrossRefGoogle Scholar
38.Kayyar, A., Qian, H., Luo, J., Appl. Phys. Lett. 95, 221905 (2009).CrossRefGoogle Scholar
39.Recham, N., Chotard, J.-N., Dupont, L., Delacourt, C., Walker, W., Armand, M., Tarascon, J.-M., Nat. Mater. 9, 68 (2010).CrossRefGoogle Scholar
40.Pereira, N., Badway, F., Wartelsky, M., Gunn, S., Amatucci, G.G., J. Electrochem. Soc. 156, A407 (2009).CrossRefGoogle Scholar
41.Marianetti, C.A., Kotliar, G., Ceder, G., Nat. Mater. 3, 627 (2004).CrossRefGoogle Scholar
42.Ménétrier, M., Saadoune, I., Levasseur, S., Delmas, C., J. Mater. Chem. 9, 1135 (1999).CrossRefGoogle Scholar
43.Maxisch, T., Zhou, F., Ceder, G., Phys. Rev. B 73, 1 (2006).Google Scholar
44.Mishra, S.K., Ceder, G., Phys. Rev. B 59, 22 (1999).Google Scholar
45.Arroyo-de Dompablo, M.E., Dominko, R., Gallardo-Amores, J.M., Dupont, L., Mali, G., Ehrenberg, H., Jamnik, J., Morán, E., Chem. Mater. 20, 5574 (2008).CrossRefGoogle Scholar
46.Woodley, S.M., Catlow, R., Nat. Mater. 7, 937 (2008).CrossRefGoogle Scholar
47.Hautier, G., Fischer, C.C., Jain, A., Mueller, T., Ceder, G., Chem. Mater. 22, 3762 (2010).CrossRefGoogle Scholar
48.Fischer, C.C., Tibbetts, K.J., Morgan, D., Ceder, G., Nat. Mater. 5, 641 (2006).CrossRefGoogle Scholar
49.Oganov, A.R., Glass, C.W., J. Chem. Phys. 124, 244704 (2006).CrossRefGoogle Scholar
50.Zhou, F., Maxisch, T., Ceder, G., Phys. Rev. Lett. 97, 1 (2006).Google Scholar
51.Malik, R., Zhou, F., Ceder, G., Phys. Rev. B 79, 1 (2009).CrossRefGoogle Scholar
52.Delacourt, C., Poizot, P., Tarascon, J.-M., Masquelier, C., Nat. Mater. 4, 254 (2005).CrossRefGoogle Scholar
53.Dodd, J.L., Yazami, R., Fultz, B., Electrochem. Solid-State Lett. 9, A151 (2006).CrossRefGoogle Scholar
54.Zhou, F., Maxisch, T., Ceder, G., Phys. Rev. Lett. 97, 1 (2006).Google Scholar
55.Cabana, J., Monconduit, L., Larcher, D., Palacín, M.R., Adv. Mater. (2010).Google Scholar
56.Badway, F., Pereira, N., Cosandey, F., Amatucci, G.G., J. Electrochem. Soc. 150, A1209 (2003).CrossRefGoogle Scholar
57.Doe, R.E., Persson, K.A., Hautier, G., Ceder, G., Electrochem. Solid-State Lett. 12, A125 (2009).CrossRefGoogle Scholar
58.Doe, R.E., Persson, K.A., Meng, Y.S., Ceder, G., Chem. Mater. 20, 5274 (2008).CrossRefGoogle Scholar
59.Chen, G., Richardson, T.J., J. Power Sources 195, 1221 (2010).CrossRefGoogle Scholar
60.Dahn, J., Fuller, E., Obrovac, M., Vonsacken, U., Solid State Ionics 69, 265 (1994).CrossRefGoogle Scholar
61.Padhi, A.K., Nanjundaswamya, K.S., Goodenough, J.B., J. Electrochem. Soc. 144, 1188 (1997).CrossRefGoogle Scholar
62.Yamada, A., Chung, S., J. Electrochem. Soc. 148, A960 (2001).CrossRefGoogle Scholar
63.Martha, S.K., Markovsky, B., Grinblat, J., Gofer, Y., Haik, O., Zinigrad, E., Aurbach, D., Drezen, T., Wang, D., Deghenghi, G., Exnar, I., J. Electrochem. Soc. 156, A541 (2009).CrossRefGoogle Scholar
64.Wang, L., Maxisch, T., Ceder, G., Chem. Mater. 19, 543 (2007).CrossRefGoogle Scholar
65.Ong, S.P., Jain, A., Hautier, G., Kang, B., Ceder, G., Electrochem. Commun. 12, 427 (2010).CrossRefGoogle Scholar
66.Kim, S.-W., Kim, J., Gwon, H., Kang, K., J. Electrochem. Soc. 156, A635 (2009).CrossRefGoogle Scholar
67.Xu, K., Chem. Rev. 104, 4303 (2004).CrossRefGoogle Scholar
68.Xing, L., Li, W., Wang, C., Gu, F., Xu, M., Tan, C., Yi, J., J. Phys. Chem. B 113, 16596 (2009).CrossRefGoogle Scholar
69.Tasaki, K., Kanda, K., Kobayashi, T., Nakamura, S., Ue, M., J. Electrochem. Soc. 153, 2192 (2006).CrossRefGoogle Scholar
70.Vollmer, J.M., Curtiss, L.A., Vissers, D.R., Amine, K., J. Electrochem. Soc. 151, A178 (2004).CrossRefGoogle Scholar
71.Tasaki, K., J. Phys. Chem. B 109, 2920 (2005).CrossRefGoogle Scholar
72.Tomasi, J., Mennucci, B., Cammi, R., Chem. Rev. 105, 2999 (2005).CrossRefGoogle Scholar
73.Borodin, O., Smith, G.D., J. Phys. Chem. B 110, 4971 (2006).CrossRefGoogle Scholar
74.Borodin, O., Smith, G.D., J. Phys. Chem. B 110, 6279 (2006).CrossRefGoogle Scholar
75.Johansson, P., Phys. Chem. Chem. Phys. 9, 1493 (2007).CrossRefGoogle Scholar
76.Ue, M., Murakami, A., Nakamura, S., J. Electrochem. Soc. 149, 1572 (2002).CrossRefGoogle Scholar
77.Galinski, M., Lewandowski, A., Stepniak, I., Electrochim. Acta 51, 5567 (2006).CrossRefGoogle Scholar
78.Garcia, B., Lavallee, S., Perron, G., Michot, C., Armand, M., Electrochim. Acta 49, 4583 (2004).CrossRefGoogle Scholar
79.Ong, S.P., Ceder, G., Electrochim. Acta 55, 3804 (2010).CrossRefGoogle Scholar
80.Izgorodina, E.I., Bernard, U.L., MacFarlane, D.R., J. Phys. Chem. A 113, 7064 (2009).CrossRefGoogle Scholar
81.Izgorodina, E.I., Forsythb, M., MacFarlane, D.R., Phys. Chem. Chem. Phys. 11, 2452 (2009).CrossRefGoogle Scholar
82.Howlett, P.C., Izgorodina, E.I., Forsyth, M., Macfarlane, D.R., Z. Phys. Chem. 220, 1483 (2006).CrossRefGoogle Scholar
83.Borodin, O., J. Phys. Chem. B 113, 12353 (2009).CrossRefGoogle Scholar
84.Gutowski, K.E., Holbrey, J.D., Rogers, R.D., Dixon, D.A., J. Phys. Chem. B 109, 23196 (2005).CrossRefGoogle Scholar
85.Borodin, O., Smith, G.D., J. Phys. Chem. B 110, 11481 (2006).CrossRefGoogle Scholar
86.Borodin, O., Smith, G.D., Geiculescu, O., Creager, S.E., Hallac, B., DesMarteau, D., J. Phys. Chem. B 110, 24266 (2006).CrossRefGoogle Scholar
87.Borodin, O., Smith, G.D., Henderson, W., J. Phys. Chem. B 110, 16879 (2006).CrossRefGoogle Scholar
88.de Andrade, J., Boes, E.S., Stassen, H., J. Phys. Chem. B 106, 13344 (2002).CrossRefGoogle Scholar
89.Monteiro, M.J., Bazito, F.F.C., Siqueira, L.J.A., Ribeiro, M.C.C., Torresi, R.M., J. Phys. Chem. B 112, 2102 (2008).CrossRefGoogle Scholar
90.Wang, R.L., Dahn, J.R., J. Electrochem. Soc. 153, A1922 (2006).CrossRefGoogle Scholar
91.Wang, R.L., Buhrmester, C., Dahn, J.R., J. Electrochem. Soc. 153, A445 (2006).CrossRefGoogle Scholar