Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T13:57:12.677Z Has data issue: false hasContentIssue false

Recent advances in rational design of efficient electrocatalyst for full water splitting across all pH conditions

Published online by Cambridge University Press:  13 July 2020

Gnanaprakasam Janani
Affiliation:
Department of Materials Science and Engineering, Chonnam National University, South Korea; [email protected]
Hyeonuk Choi
Affiliation:
Department of Materials Science and Engineering, Chonnam National University, South Korea; [email protected]
Subramani Surendran
Affiliation:
Department of Materials Science and Engineering, Chonnam National University, South Korea; [email protected]
Uk Sim
Affiliation:
Department of Materials Science and Engineering, Chonnam National University, South Korea; [email protected]
Get access

Abstract

The electrochemical reaction that involves the splitting of water into hydrogen and oxygen gas is the superior technique for sustainable energy conversion and storage without the environmentally damaging effects of fossil fuels. To date, a large number of electrocatalysts have been used for electrochemical water splitting (EWS). Nowadays, the quest for a universal pH stable bifunctional electrocatalyst that can efficiently enhance the hydrogen and oxygen evolution reactions (HERs and OERs) is gaining significant interest in the research community. This approach avoids the divergence in the pH of the electrolyte for OER and HER activity and effectively reduces the difficulty and system cost in practical EWS. This article highlights engineering strategies and challenges in designing prospective universal pH-stable electrocatalysts with feasible OER and HER pathways for full water splitting over a wide pH range.

Type
Nanomaterials for Electrochemical Water Splitting
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally.

References

Jiao, C., Hassan, M., Bo, X., Zhou, M., J. Alloys Compd. 764, 88 (2018).CrossRefGoogle Scholar
Zeng, J., Liu, J., Siwal, S.S., Yang, W., Fu, X., Zhang, Q., Appl. Surf. Sci. 491, 570 (2019).CrossRefGoogle Scholar
Yu, Y., Shi, Y., Zhang, B., Acc. Chem. Res. 51, 1711 (2018).Google Scholar
Choi, C.H., Chung, K., Nguyen, T.-T.H., Kim, D.H., ACS Energy Lett. 3, 1415 (2018).Google Scholar
Ma, T.Y., Dai, S., Qiao, S.Z., Mater. Today 19, 265 (2016).Google Scholar
Chen, L., Dong, X., Wang, Y., Xia, Y., Nat. Commun. 7, 11741 (2016).Google Scholar
Chaudhari, N.K., Jin, H., Kim, B., Lee, K., Nanoscale 9, 12231 (2017).CrossRefGoogle Scholar
Liao, P., Keith, J.A., Carter, E.A., J. Am. Chem. Soc. 134, 13296 (2012).Google Scholar
Xiang, C., Papadantonakis, K.M., Lewis, N.S., Mater. Horiz. 3, 169 (2016).Google Scholar
Han, H., Hong, Y.-R., Woo, J., Mhin, S., Kim, K.M., Kwon, J., Choi, H., Chung, Y.-C., Song, T., Adv. Energy Mater. 9, 1803799 (2019).Google Scholar
Dau, H., Limberg, C., Reier, T., Risch, M., Roggan, S., Strasser, P., ChemCatChem 2, 724 (2010).CrossRefGoogle Scholar
Conway, B.E., Tilak, B.V., Electrochim. Acta 47, 3571 (2002).CrossRefGoogle Scholar
Trasatti, S., J. Electroanal. Chem. Interfacial Electrochem. 39, 163 (1972).CrossRefGoogle Scholar
Lai, F., Feng, J., Ye, X., Zong, W., He, G., Miao, Y.-E., Han, X., Ling, X.Y., Parkin, I.P., Pan, B., Sun, Y., Liu, T., J. Mater. Chem. A 7, 827 (2019).Google Scholar
Siracusano, S., Van Dijk, N., Backhouse, R., Merlo, L., Baglio, V., Aricò, A.S., Renew. Energy 123, 52 (2018).CrossRefGoogle Scholar
Wu, R., Xiao, B., Gao, Q., Zheng, Y.-R., Zheng, X.-S., Zhu, J.-F., Gao, M.-R., Yu, S.-H., Angew. Chem. 130, 15671 (2018).Google Scholar
Zhang, X.Y., Yuan, H., Mao, F., Wen, C.F., Zheng, L.R., Liu, P.F., Yang, H.G., ChemSusChem 12, 5063 (2019).Google Scholar
Anantharaj, S., Karthik, K., Amarnath, T.S., Chatterjee, S., Subhashini, E., Swaathini, K.C., Karthick, P.E., Kundu, S., Appl. Surf. Sci. 478, 784 (2019).CrossRefGoogle Scholar
Chen, L., Dong, X., Wang, F., Wang, Y., Xia, Y., Chem. Commun. 52, 3147 (2016).Google Scholar
Zhuang, Z., Wang, Y., Xu, C.-Q., Liu, S., Chen, C., Peng, Q., Zhuang, Z., Xiao, H., Pan, Y., Lu, S., Yu, R., Cheong, W.-C., Cao, X., Wu, K., Sun, K., Wang, Y., Wang, D., Li, J., Li, Y., Nat. Commun. 10, 4875 (2019).Google Scholar
Zhao, Y., Bai, J., Wu, X.-R., Chen, P., Jin, P.-J., Yao, H.-C., Chen, Y., J. Mater. Chem. A 7, 16437 (2019).Google Scholar
Yang, Y., Yao, H., Yu, Z., Islam, S.M., He, H., Yuan, M., Yue, Y., Xu, K., Hao, W., Sun, G., Li, H., Ma, S., Zapol, P., Kanatzidis, M.G., J. Am. Chem. Soc. 141, 10417 (2019).Google Scholar
Cheng, W., Zhang, H., Zhao, X., Su, H., Tang, F., Tian, J., Liu, Q., J. Mater. Chem. A 6, 9420 (2018).Google Scholar
Liu, Z., Tan, H., Liu, D., Liu, X., Xin, J., Xie, J., Zhao, M., Song, L., Dai, L., Liu, H., Adv. Sci. 6, 1801829 (2019).Google Scholar
Liu, H., Peng, X., Liu, X., Qi, G., Luo, J., ChemSusChem 12, 1334 (2019).Google Scholar
Wang, L., Duan, X., Liu, X., Gu, J., Si, R., Qiu, Y., Qiu, Y., Shi, D., Chen, F., Sun, X., Lin, J., Sun, J., Adv. Energy Mater. 10, 1903137 (2020).Google Scholar
Ray, C., Lee, S.C., Sankar, K.V., Jin, B., Lee, J., Park, J.H., Jun, S.C., ACS Appl. Mater. Interfaces 9, 37739 (2017).CrossRefGoogle Scholar
Wang, J., Ji, Y., Yin, R., Li, Y., Shao, Q., Huang, X., J. Mater. Chem. A 7, 6411 (2019).Google Scholar
Yang, J., Shao, Q., Huang, B., Sun, M., Huang, X., iScience 11, 492 (2019).CrossRefGoogle Scholar
Yao, Q., Huang, B., Zhang, N., Sun, M., Shao, Q., Huang, X., Angew. Chem. Int. Ed. Engl. 58, 13983 (2019).Google Scholar
Lai, J., Li, S., Wu, F., Saqib, M., Luque, R., Xu, G., Energy Environ. Sci. 9, 1210 (2016).Google Scholar
Najafi, L., Bellani, S., Oropesa-Nuñez, R., Prato, M., Martín-García, B., Brescia, R., Bonaccorso, F., ACS Nano 13, 3162 (2019).CrossRefGoogle Scholar
Xing, C., Xue, Y., Huang, B., Yu, H., Hui, L., Fang, Y., Liu, Y., Zhao, Y., Li, Z., Li, Y., Angew. Chem. 131, 14035 (2019).Google Scholar
Guan, C., Wu, H., Ren, W., Yang, C., Liu, X., Ouyang, X., Song, Z., Zhang, Y., Pennycook, S.J., Cheng, C., Wang, J., J. Mater. Chem. A 6, 9009 (2018).Google Scholar
Zheng, T., Shang, C., He, Z., Wang, X., Cao, C., Li, H., Si, R., Pan, B., Zhou, S., Zeng, J., Angew. Chem. 131, 14906 (2019).Google Scholar
Wu, X., Feng, B., Li, W., Niu, Y., Yu, Y., Lu, S., Zhong, C., Liu, P., Tian, Z., Chen, L., Hu, W., Li, C.M., Nano Energy 62, 117 (2019).Google Scholar
Fu, L., Hu, X., Li, Y., Cheng, G., Luo, W., Nanoscale 11, 8898 (2019).Google Scholar
Sim, Y., Kim, S.J., Janani, G., Chae, Y., Surendran, S., Kim, H., Yoo, S., Seok, D.C., Jung, Y.H., Jeon, C., Moon, J., Sim, U., Appl. Surf. Sci. 507, 145157 (2020).CrossRefGoogle Scholar
Surendran, S., Shanmugapriya, S., Ramasamy, H., Janani, G., Kalpana, D., Lee, Y.S., Sim, U., Selvan, R.K., Appl. Surf. Sci. 494, 916 (2019).CrossRefGoogle Scholar
Surendran, S., Shanmugapriya, S., Lee, Y.S., Sim, U., Selvan, R.K., ChemistrySelect 3, 12303 (2018).CrossRefGoogle Scholar
Kreuter, W., Hofmann, H., Int. J. Hydrogen Energy 23, 661 (1998).CrossRefGoogle Scholar
Santos, D.M.F., Sequeira, C.A.C., Figueiredo, J.L., Quim. Nova 36, 1176 (2013).Google Scholar
Sheng, W., Gasteiger, H.A., Shao-Horn, Y., J. Electrochem. Soc. 157, B1529-B1536 (2010).CrossRefGoogle Scholar
Suen, N.-T., Hung, S.-F., Quan, Q., Zhang, N., Xu, Y.-J., Chen, H.M., Chem. Soc. Rev. 46, 337 (2017).CrossRefGoogle Scholar
Gong, M., Li, Y., Wang, H., Liang, Y., Wu, J.Z., Zhou, J., Wang, J., Regier, T., Wei, F., Dai, H., J. Am. Chem. Soc. 135, 8452 (2013).Google Scholar
Wang, P., Yan, M., Meng, J., Jiang, G., Qu, L., Pan, X., Liu, J.Z., Ma, L., Nat. Commun. 8, 1 (2017).Google Scholar
Asha, K., Banerjee, A., Saxena, S., Khan, S.A., Sulaniya, I., Satsangi, V.R., Shrivastav, R., Kant, R., Dass, S., J. Power Sources 432, 38 (2019).CrossRefGoogle Scholar
Duan, H., Li, D., Tang, Y., He, Y., Ji, S., Wang, R., Lv, H., Lopes, P.P., Paulikas, A.P., Li, H., J. Am. Chem. Soc. 139, 5494 (2017).Google Scholar
Feng, J., Lv, F., Zhang, W., Li, P., Wang, K., Yang, C., Wang, B., Yang, Y., Zhou, J., Lin, F., Adv. Mater. 29, 1703798 (2017).Google Scholar
Wang, P., Jiang, K., Wang, G., Yao, J., Huang, X., Angew. Chem. Int. Ed. Engl. 55, 12859 (2016).Google Scholar
Joo, J., Jin, H., Oh, A., Kim, B., Lee, J., Baik, H., Joo, S.H., Lee, K., J. Mater. Chem. A 6, 16130 (2018).CrossRefGoogle Scholar
Reier, T., Pawolek, Z., Cherevko, S., Bruns, M., Jones, T., Teschner, D., Selve, S., Bergmann, A., Nong, H.N., Schlög, R., J. Am. Chem. Soc. 137, 13031 (2015).CrossRefGoogle Scholar
Jin, H., Hong, Y., Yoon, J., Oh, A., Chaudhari, N.K., Baik, H., Joo, S.H., Lee, K., Nano Energy 42, 17 (2017).CrossRefGoogle Scholar
Liu, B., Zhang, L., Xiong, W., Ma, M., Angew. Chem. Int. Ed. Engl. 55, 6725 (2016).Google Scholar
Xu, K., Cheng, H., Liu, L., Lv, H., Wu, X., Wu, C., Xie, Y., Nano Lett. 17, 578 (2017).Google Scholar
Zou, X., Zhang, Y., J. Chem. Soc. Rev. 44, 5148 (2015).Google Scholar
Zhang, J., Wang, G., Liao, Z., Zhang, P., Wang, F., Zhuang, X., Zschech, E., Feng, X., Nano Energy 40, 27 (2017).Google Scholar
Hambourger, M., Gervaldo, M., Svedruzic, D., King, P.W., Gust, D., Ghirardi, M., Moore, A.L., Moore, T.A., J. Am. Chem. Soc. 130, 2015 (2008).CrossRefGoogle Scholar
Le Goff, A., Artero, V., Jousselme, B., Tran, P.D., Guillet, N., Métayé, R., Fihri, A., Palacin, S., Fontecave, M., Science 326, 1384 (2009).CrossRefGoogle Scholar
Kundu, A., Sahu, J.N., Redzwan, G., Hashim, M.A., Int. J. Hydrogen Energy 38, 1745 (2013).CrossRefGoogle Scholar
Kumari, S., Ajayi, B.P., Kumar, B., Jasinski, J.B., Sunkara, M.K., Spurgeon, J.M., Energy Environ. Sci. 10, 2432 (2017).Google Scholar
Shi, Q., Zhu, C., Zhong, H., Su, D., Li, N., Engelhard, M.H., Xia, H., Zhang, Q., Feng, S., Beckman, S.P., ACS Energy Lett. 3, 2038 (2018).Google Scholar
Lv, F., Feng, J., Wang, K., Dou, Z., Zhang, W., Zhou, J., Yang, C., Luo, M., Yang, Y., Li, Y., Gao, P., Guo, S., ACS Cent. Sci. 4, 1244 (2018).Google Scholar
Li, J., Xia, Z., Zhou, X., Qin, Y., Ma, Y., Qu, Y., Nano Res. 10, 814 (2017).Google Scholar
Xue, Z.-H., Su, H., Yu, Q.-Y., Zhang, B., Wang, H.-H., Li, X.-H., Chen, J.-S., Adv. Energy Mater. 7, 1602355 (2017).Google Scholar
Cook, T.R., Dogutan, D.K., Reece, S.Y., Surendranath, Y., Teets, T.S., Nocera, D.G., Chem. Rev. 110, 6474 (2010).CrossRefGoogle Scholar
Marini, S., Salvi, P., Nelli, P., Pesenti, R., Villa, M., Berrettoni, M., Zangari, G., Kiros, Y., Electrochim. Acta. 82, 384 (2012).CrossRefGoogle Scholar