Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T00:48:22.403Z Has data issue: false hasContentIssue false

Real-Time X-Ray Scattering Studies of Surface Structure During Metalorganic Chemical Vapor Deposition of GaN

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Vapor-phase processes such as chemical vapor deposition (CVD) and reactive ion etching are the primary methods for the production-scale synthesis and processing of many high-quality thin-film materials. For example, these processes are widely used in the microelectronics industry for synthesis and lithography of the various semiconducting, insulating, and conducting layers in devices. Understanding the means of controlling the microstructure and composition of these materials is of great technological interest. However a difficulty often encountered in developing vapor-phase processes is an undesirable dependence on trial-and-error methods for optimizing the many process parameters. These parameters include gas composition, flow rate, pressure, and substrate temperature, all of which are typically changing with time. This reliance on empirical methods can be attributed to the tremendous chemical and physical complexity of vapor-phase processes and the lack of appropriate in situ measurement techniques for the vapor-phase environment.

We have initiated a program to apply synchrotron x-ray analysis techniques as real-time probes of film and surface structure during vapor-phase processing. X-rays have a combination of properties which makes them particularly well-suited for these studies. Unlike electrons, x-rays have a sufficiently low absorption to penetrate vapor-phase processing environments and chamber walls. Unlike visible light, x-rays have wavelengths and energies suitable for study of atomic-scale structure and chemistry. A growing number of in situ synchrotron x-ray investigations of film growth and processing demonstrate the power of these techniques.

Type
In Situ Synchrotron Radiation Research in Materials Science
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Fuoss, P.H., Kisker, D.W., Lamelas, F.J., Stephenson, G.B., Imperatori, P., and Brennan, S., Phys. Rev. Lett. 69 (1992) p. 2791; D.W. Kisker, G.B. Stephenson, J. Tersoff, P.H. Fuoss, and S. Brennan, J. Cryst. Growth 163 (1996) p. 54.CrossRefGoogle Scholar
2.Murty, M.V. Ramana, Curcic, T., Judy, A., Cooper, B.H., Woll, A.R., Brock, J.D., Kycia, S., and Headrick, R.L., Phys. Rev. Lett. 80 (1998) p. 4713.CrossRefGoogle Scholar
3.Robinson, I. K., Whiteaker, K.L., and Walko, D.A., Physica B 221 (1996) p. 70.CrossRefGoogle Scholar
4.Elliott, W.C., Miceli, P.F., Tse, T., and Stephens, P.W., Physica B 221 (1996) p. 65.CrossRefGoogle Scholar
5.Alvarez, J., Lundgren, E., Torrelles, X., and Ferrer, S., Phys. Rev. B 57 (1998) p. 6325.CrossRefGoogle Scholar
6.You, H., Chiarello, R.P., Kim, H.K., and Vandervoort, K.G., Phys. Rev. Lett. 70 (1993) p. 2900.CrossRefGoogle Scholar
7.Lairson, B.M., Payne, A.P., Brennan, S., Rensing, N.M., Daniels, B.J., and Clemens, B.M., J. Appl. Phys. 78 (1995) p. 4449.CrossRefGoogle Scholar
8.Je, J.H., Noh, D.Y., Kim, H.K., and Liang, K.S., J. Appl. Phys. 81 (1997) p. 6126.CrossRefGoogle Scholar
9.Headrick, R.L., Kycia, S., Woll, A.R., Brock, J.D., and Murty, M.V. Ramana, Phys. Rev. B 58 (1998) p. 4818.CrossRefGoogle Scholar
10.Kellerman, B.K., Chason, E., Adams, D.P., Mayer, T.M., and White, J.M., Surf. Sci. 375 (1997) p. 331.CrossRefGoogle Scholar
11.Robach, O., Renaud, G., Barbier, A., and Guenard, P., Surf. Rev. Lett. 5 (1997) p. 359.CrossRefGoogle Scholar
12.Morkoc, H. and Mohammad, S.N., Science 267 (1995) p. 51.CrossRefGoogle Scholar
13.Brennan, S., Fuoss, P.H., Kahn, J.L., and Kisker, D.W., Nucl. Iustrum. Methods Phys. Res. A 291 (1990) p. 86.CrossRefGoogle Scholar
14.Kisker, D.W., Stephenson, G.B., Kamiya, I., Fuoss, P.H., Aspnes, D.E., Mantese, L., and Brennan, S., Phys. Status Solidi A 152 (1995) p. 9.CrossRefGoogle Scholar
15.Fuoss, P.H. and Brennan, S., Anuu. Rev. Mater. Sci. 20 (1990) p. 365; I.K. Robinson and D.J. Tweet, Rep. Prog. Phys. 55 (1992) p. 599.CrossRefGoogle Scholar
16.Neave, J.H., Joyce, B.A., Dobson, P.J., and Norton, N., Appl. Phys. A 31 (1983) p. 1.CrossRefGoogle Scholar
17.Vlieg, E., van der Gon, A.W. Denier, van der Veen, J.F., MacDonald, J.E., and Norris, C., Phys. Rev. Lett. 61 (1988) p. 2241.CrossRefGoogle Scholar
18.Keller, S., Keller, B.P., Wu, Y-F., Heying, B., Kapolnek, D., Speck, J.S., Mishra, U.K., and DenBaars, S.P., Appl. Phys. Lett. 68 (1996) p. 1525.CrossRefGoogle Scholar
19.Zuiker, C.D., Gruen, D.M., and Krauss, A.R., MRS Bulletin XX (5) (1995) p. 29.CrossRefGoogle Scholar