Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T13:38:32.176Z Has data issue: false hasContentIssue false

Proton Conduction in Solids: Bulk and Interfaces

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Truly proton-conducting materials would have an immense impact on sustainable energy technologies for the 21st century, through efficient fuel cells, electrolyzers, and gas-separation membranes. However, proton conduction combined with materials stability seems difficult to achieve, and some hurdles and pathways are outlined in this article. Problems, possibilities, and artifacts of transport across and along interfaces are discussed, linked mainly to space-charge layer properties and engineering of the grain-boundary core and to water in nanovoids. The importance of protons in many semiconducting functional oxides is also explained. At lower temperatures and in humid environments, the presence of protonated cation vacancies (Ruetschi defects) is predicted and is expected to play an important role in photoelectrochemistry, catalysis, and surface transport.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Iwahara, H., Asakura, Y., Katahira, K., Tanaka, M., Solid State Ionics 168, 299 (2004).CrossRefGoogle Scholar
2Norby, T., Haugsrud, R., in “Membrane Technology, Vol. 2: Membranes for Energy Conversion,” Peinemann, K.V., Nunes, S.P., Eds. (Wiley-VCH, Weinheim, 2008), pp. 169216.Google Scholar
3Barbir, F., PEM Fuel Cells–Theory and Practice, (Amsterdam, Elsevier Academic Press, 2005), p. 456.Google Scholar
4Colomban, Ph., Ed., Proton Conductors: Solids, Membranes, and Gels–Materials and Devices, “Chemistry of Solid-State Materials No.2” (Series eds.: Dunn, B., Goodby, J.W., West, A.R.), (Cambridge University Press, Cambridge, 1992), p. 581.CrossRefGoogle Scholar
5Iwahara, H., in “Proc. 17th Risø Int. Symp. Mat. Sci.,” Poulsen, F.W., Bonanos, N., Linderoth, S., Mogensen, M., Zachau-Christiansen, B., Eds. (Risø National Laboratories, Roskilde, Denmark, 1996), pp. 1328.Google Scholar
6Wainright, J.S., Wang, J.-T., Weng, D., Savinell, R.F., Litt, M., J. Electrochem. Soc. 142, L121 (1995).CrossRefGoogle Scholar
7Boysen, D.A., Uda, T., Chisholm, C.R.I., Haile, S.M., Science 303 (5654), 68 (2004).CrossRefGoogle Scholar
8Donne, S.W., Feddrix, F.H., Glöckner, R., Marion, S., Norby, T., Solid State Ionics 152–153, 695 (2002).CrossRefGoogle Scholar
9Norby, , Widerøe, M., Gløckner, R., Larring, Y., “Hydrogen in oxides,” Dalton Trans., 19, 30123018 (2004).CrossRefGoogle Scholar
10Bjørheim, T.S., Kuwabara, A., Ahmed, I., Haugsrud, R., Stølen, S., Norby, T., Solid State Ionics (2009), in print.Google Scholar
11Larring, Y., Norby, T., Solid State Ionics, 97, 523528 (1997).CrossRefGoogle Scholar
12Haugsrud, R., Norby, T., Solid State Ionics, 177, 11291135 (2006).CrossRefGoogle Scholar
13Zhu, B., Albinsson, I., Mellander, B.-E., Ionics 4, 261 (1998).CrossRefGoogle Scholar
14Meng, G., Ma, G., Ma, Q., Peng, R., Liu, X., Solid State Ionics 178, 697 (2007).CrossRefGoogle Scholar
15Zhang, F., Yang, Q., Pan, B., Xu, R., Wang, H., Ma, G., Mater. Lett. 61, 4144 (2007).CrossRefGoogle Scholar
16Kim, S., Anselmi-Tamburini, U., Park, H.J., Martin, M., Munir, Z.A., Adv. Mater. 20, 556 (2008).CrossRefGoogle Scholar
17Kuwabara, A., Haugsrud, R., Stølen, S., Norby, T., Phys. Chem. Chem. Phys. 11 (27), 5550 (2009).CrossRefGoogle Scholar
18Schober, T., Friedrich, J., Krug, F., Solid State Ionics 99, 9 (1997).CrossRefGoogle Scholar
19Schober, T., Solid State Ionics 177, 471 (2006).CrossRefGoogle Scholar
20Jalarvo, N., Haavik, C., Kongshaug, C., Norby, P., Norby, T., Solid State Ionics 180, 1151 (2009).CrossRefGoogle Scholar
21Noirault, S., Célérier, S., Joubert, O., Caldes, M.T., Piffard, Y., Adv. Mater. 19, 867 (2007).CrossRefGoogle Scholar
22Lee, D.-K., Kogel, L., Ebbinghaus, S.G., Valov, I., Wiemhoefer, H.-D., Lerch, M., Janek, J., Phys. Chem. Chem. Phys. 11, 3105 (2009).CrossRefGoogle Scholar
23Norby, T., Christiansen, N., Solid State Ionics 77, 240 (1995).CrossRefGoogle Scholar
24Amezawa, K., Kitajima, Y., Tomii, Y., Yamamoto, N., Widerøe, M., Norby, T., Solid State Ionics 176, 2867 (2005).CrossRefGoogle Scholar
25Nalini, V., Norby, T., Anuradha, A.M., Proc. 10th Asian Conf. Solid State Ionics, Chowdari, B.V.R., Careem, M.A., Dissanayake, M.A.K.I., Rajapakse, R.M.G., Seneviratne, V.A., Eds. (Kandy, Sri Lanka, June 2006, World Scientific, Singapore), pp. 321328.Google Scholar
26Nagao, M., Kamiya, T., Heo, P., Tomita, A., Hibino, T., Sano, M., J. Electrochem. Soc. 153, A1604 (2006).CrossRefGoogle Scholar
27Tao, S., Solid State Ionics 180, 148 (2009).CrossRefGoogle Scholar
28Norby, T., in “Perovskite oxides for solid oxide fuel cells,” Ishihara, T., Ed. (Springer, 2009), pp. 217241.CrossRefGoogle Scholar
29Haugsrud, R., Solid State Ionics 178, 555 (2007).CrossRefGoogle Scholar
30Thomas, D.G., Lander, J.J., J. Chem. Phys. 25, 11361142 (1956).CrossRefGoogle Scholar
31Widerøe, M., Kochetova, N., Norby, T., Dalton Trans. 19, 31473151 (2004).CrossRefGoogle Scholar
32Kofstad, P., Non-stoichiometry, Diffusion, and Electrical Conductivity of Binary Metal Oxides, (Wiley-Interscience, New York, 1972), p. 382.Google Scholar
33Park, H.J., Kwak, C., Lee, K.H., Lee, S.M., Lee, E.S., J. Eur. Ceram. Soc. 29, 2429 (2009).CrossRefGoogle Scholar
34Kim, S., Fleig, J., Maier, J., Phys. Chem. Chem. Phys. 5, 2268 (2003).CrossRefGoogle Scholar
35Fjeld, H., Kepaptsoglou, D.M., Haugsrud, R., Norby, T., Solid State Ionics (2009) doi:10.1016/j.ssi.2009.04.019.Google Scholar
36Thomas, D.G., Lander, J.J., J. Chem. Phys. 25, 1136 (1956).CrossRefGoogle Scholar
37Hill, G.J., Br. J. Appl. Phys. 1, 1151 (1968).Google Scholar
38Bates, J.B., Wang, J.C., Perkins, R.A., Phys. Rev. B: Cond. Matter Mater. Phys. 19, 4130 (1979).CrossRefGoogle Scholar
39Ruetschi, P., J. Electrochem. Soc. 131, 2737 (1984).CrossRefGoogle Scholar
40Hugenschmidt, M.B., Gamble, L., Campbell, C.T., Surface Science, 302 (3), 329340 (1994).CrossRefGoogle Scholar
41Nowotny, M.K., Sheppard, L.R., Bak, T., Nowotny, J., J. Phys. Chem. C 112, 5275 (2008).CrossRefGoogle Scholar