Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T13:14:38.802Z Has data issue: false hasContentIssue false

Protein-based functional nanocomposites

Published online by Cambridge University Press:  10 December 2020

Zheyu Wang
Affiliation:
Institute of Materials Science and Engineering, Washington University in St. Louis, USA; [email protected]
Saewon Kang
Affiliation:
Georgia Institute of Technology, USA; [email protected]
Sisi Cao
Affiliation:
Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, USA; [email protected]
Michelle Krecker
Affiliation:
School of Material Science and Engineering, Georgia Institute of Technology, USA; [email protected]
Vladimir V. Tsukruk
Affiliation:
School of Material Science and Engineering, Georgia Institute of Technology, USA; [email protected]
Srikanth Singamaneni
Affiliation:
Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, USA; [email protected]
Get access

Abstract

Protein materials are promising candidates as the building blocks for functional and high-performance bionanocomposites, owing to their unique and well-developed nanoscale structure, rich chemical functionality, excellent mechanical properties, biocompatibility, and biodegradability. Rational integration of protein materials with synthetic organic and inorganic nanomaterials through tailored interfacial interactions leads to synergistic enhancement in the properties compared to the individual components. In this article, we discuss the recent progress in protein-based nanocomposites, which aim to harness the unique structure and properties of proteins and synthetic nanomaterials for realizing advanced materials with greatly enhanced properties. Specifically, we highlight bionanocomposites based on two β-sheet rich proteins, silk fibroin and amyloid fibril, as representative examples as well as a few other protein materials such as keratin, elastin, and collagens. We describe the biotic–abiotic interfaces, processing methods, physical properties, and potential applications of these protein nanocomposites. Considering the additional value of renewability, abundancy, and ambient processability, such bionanocomposites are promising candidates for advanced and emerging applications, such as environmental remediation, biomedicine, biosensors, and photonics.

Type
Engineered Proteins as Multifunctional Materials
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Xie, W., Tadepalli, S., Park, S.H., Kazemi-Moridani, A., Jiang, Q., Singamaneni, S., Lee, J.-H., Nano Lett. 18, 987 (2018).CrossRefGoogle Scholar
Lin, N., Meng, Z., Toh, G.W., Zhen, Y., Diao, Y., Xu, H., Liu, X.Y., Small 11, 1205 (2015).CrossRefGoogle ScholarPubMed
Xiong, R., Kim, H.S., Zhang, S., Kim, S., Korolovych, V.F., Ma, R., Yingling, Y.G., Lu, C., Tsukruk, V.V., ACS Nano 11, 12008 (2017).CrossRefGoogle Scholar
Tian, L., Luan, J., Liu, K.-K., Jiang, Q., Tadepalli, S., Gupta, M.K., Naik, R.R., Singamaneni, S., Nano Lett. 16, 609 (2016).CrossRefGoogle Scholar
Shen, Y., Posavec, L., Bolisetty, S., Hilty, F.M., Nyström, G., Kohlbrecher, J., Hilbe, M., Rossi, A., Baumgartner, J., Zimmermann, M.B., Nat. Nanotechnol. 12, 642 (2017).CrossRefGoogle Scholar
Tadepalli, S., Hamper, H., Park, S.H., Cao, S., Naik, R.R., Singamaneni, S., ACS Biomater. Sci. Eng. 2, 1084 (2016).CrossRefGoogle Scholar
Li, C., Adamcik, J., Mezzenga, R., Nat. Nanotechnol. 7, 421 (2012).CrossRefGoogle Scholar
Yamane, T., Umemura, K., Asakura, T., Biomacromolecules. 6 (1), 468 (2005).Google Scholar
Bolisetty, S., Mezzenga, R., Nat. Nanotechnol. 6 (1), 468 (2005).Google Scholar
Hu, K., Gupta, M.K., Kulkarni, D.D., Tsukruk, V.V., Adv. Mater. 25, 2301 (2013).CrossRefGoogle Scholar
Volkov, V., Ferreira, A.V., Cavaco-Paulo, A., Macromol. Mater. Eng. 300, 1199 (2015).CrossRefGoogle Scholar
Knowles, T.P., Mezzenga, R., Adv. Mater. 28, 6546 (2016).CrossRefGoogle Scholar
McGrath, K., Kaplan, D., Protein-Based Materials (Springer, Boston, 1997).CrossRefGoogle Scholar
Alberts, B., Johnson, A., Walter, P., Molecular Biology of the Cell (Garland Science, New York, 2002).Google Scholar
Ling, S., Li, C., Adamcik, J., Shao, Z., Chen, X., Mezzenga, R., Adv. Mater. 26, 4569 (2014).CrossRefGoogle Scholar
Cao, S., Jiang, Q., Wu, X., Ghim, D., Gholami Derami, H., Chou, P.-I., Jun, Y.-S., Singamaneni, S., J. Mater. Chem. A 7, 24092 (2019).CrossRefGoogle Scholar
Xiong, R., Luan, J., Kang, S., Ye, C., Singamaneni, S., Tsukruk, V.V., Chem. Soc. Rev. 49, 983 (2020).CrossRefGoogle Scholar
Xiong, R., Grant, A.M., Ma, R., Zhang, S., Tsukruk, V.V., Mater. Sci. Eng. R 125 (2018).CrossRefGoogle Scholar
Ling, S., Kaplan, D.L., Buehler, M.J., Nat. Rev. Mater. 3 (2018).CrossRefGoogle Scholar
Asakura, T., Ohgo, K., Ishida, T., Taddei, P., Monti, P., Kishore, R., Biomacromolecules 6, 468 (2005).CrossRefGoogle Scholar
Huang, W., Ling, S., Li, C., Omenetto, F.G., Kaplan, D.L., Chem. Soc. Rev. 47, 6486 (2018).CrossRefGoogle Scholar
Cao, S., Tang, R., Sudlow, G., Wang, Z., Liu, K.-K., Luan, J., Tadepalli, S., Seth, A., Achilefu, S., Singamaneni, S., ACS Appl. Mater. Interfaces 11, 5499 (2019).CrossRefGoogle Scholar
Wang, Y., Guo, J., Zhou, L., Ye, C., Omenetto, F.G., Kaplan, D.L., Ling, S., Adv. Funct. Mater. 28, 1805305 (2018).CrossRefGoogle Scholar
Rockwood, D.N., Preda, R.C., Yücel, T., Wang, X., Lovett, M.L., Kaplan, D.L., Nat. Protoc. 6, 1612 (2011).CrossRefGoogle Scholar
Lin, N., Cao, L., Huang, Q., Wang, C., Wang, Y., Zhou, J., Liu, X.Y., Adv. Funct. Mater. 26, 8885 (2016).CrossRefGoogle Scholar
Zheng, Z., Liu, M., Guo, S., Wu, J., Lu, D., Li, G., Liu, S., Wang, X., Kaplan, D., J. Mater. Chem. B 3, 6509 (2015).CrossRefGoogle Scholar
Xue, J., Gao, H.L., Wang, X.Y., Qian, K.Y., Yang, Y., He, T., He, C., Lu, Y., Yu, S.H., Angew. Chem. Int. Ed. 131, 14290 (2019).CrossRefGoogle Scholar
Wu, G., Song, P., Zhang, D., Liu, Z., Li, L., Huang, H., Zhao, H., Wang, N., Zhu, Y., Int. J. Biol. Macromol. 104, 533 (2017).CrossRefGoogle Scholar
Cai, L., Shao, H., Hu, X., Zhang, Y., ACS Sustain. Chem. Eng. 3, 2551 (2015).CrossRefGoogle Scholar
Wang, J.-T., Li, L.-L., Zhang, M.-Y., Liu, S.-L., Jiang, L.-H., Shen, Q., Mater. Sci. Eng. C 34, 417 (2014).CrossRefGoogle Scholar
Wang, Q., Wang, C., Zhang, M., Jian, M., Zhang, Y., Nano Lett. 16, 6695 (2016).CrossRefGoogle Scholar
Xiong, R., Hu, K., Grant, A.M., Ma, R., Xu, W., Lu, C., Zhang, X., Tsukruk, V.V., Adv. Mater. 28, 1501 (2016).CrossRefGoogle Scholar
Yin, Y., Hu, K., Grant, A.M., Zhang, Y., Tsukruk, V.V., Langmuir 31, 10859 (2015).CrossRefGoogle Scholar
Guin, T., Stevens, B., Krecker, M., D'Angelo, J., Humood, M., Song, Y., Smith, R., Polycarpou, A., Grunlan, J.C., ACS Appl. Mater. Interfaces 8, 6229 (2016).CrossRefGoogle Scholar
Ayutsede, J., Gandhi, M., Sukigara, S., Ye, H., Hsu, C.-m., Gogotsi, Y., Ko, F., Biomacromolecules 7, 208 (2006).CrossRefGoogle Scholar
Jiang, Q., Ghim, D., Cao, S., Tadepalli, S., Liu, K.-K., Kwon, H., Luan, J., Min, Y., Jun, J.-S., Singamaneni, S., Environ. Sci. Technol. 53, 412 (2019).CrossRefGoogle Scholar
Suk, J.W., Piner, R.D., An, J., Ruoff, R.S., ACS Nano 4, 6557 (2010).CrossRefGoogle Scholar
Lee, C., Wei, X., Kysar, J.W., Hone, J., Science 321, 385 (2008).CrossRefGoogle Scholar
Gao, W., “The Chemistry of Graphene Oxide,” in Graphene Oxide (Springer, Cham, Switzerland, 2015), pp. 6195.CrossRefGoogle ScholarPubMed
Wang, Y., Ma, R., Hu, K., Kim, S., Fang, G., Shao, Z., Tsukruk, V.V., ACS Appl. Mater. Interfaces 8, 24962 (2016).CrossRefGoogle ScholarPubMed
Tang, Z., Kotov, N.A., Magonov, S., Ozturk, B., Nat. Mater. 2, 413 (2003).CrossRefGoogle Scholar
Ghidiu, M., Lukatskaya, M.R., Zhao, M.-Q., Gogotsi, Y., Barsoum, M.W., Nature 516, 78 (2014).CrossRefGoogle Scholar
Hart, J.L., Hantanasirisakul, K., Lang, A.C., Anasori, B., Pinto, D., Pivak, Y., van Omme, J.T., May, S.J., Gogotsi, Y., Taheri, M.L., Nat. Commun. 10 (2019).Google Scholar
Vural, M., Zhu, H., Pena-Francesch, A., Jung, H., Allen, B.D., Demirel, M.C., ACS Nano 14, 6956 (2020).CrossRefGoogle Scholar
Vural, M., Pena-Francesch, A., Bars-Pomes, J., Jung, H., Gudapati, H., Hatter, C.B., Allen, B.D., Anasori, B., Ozbolat, I.T., Gogotsi, Y., Adv. Funct. Mater. 28, 1801972 (2018).CrossRefGoogle Scholar
Krecker, M.C., Bukharina, D., Hatter, C.B., Gogotsi, Y., Tsukruk, V.V., Adv. Funct. Mater. 30, 2004554 (2020).CrossRefGoogle Scholar
Rozmysłowska-Wojciechowska, A., Szuplewska, A., Wojciechowski, T., Poźniak, S., Mitrzak, J., Chudy, M., Ziemkowska, W., Chlubny, L., Olszyna, A., Jastrzębska, A.M., Mater. Sci. Eng. C 111, 110790 (2020).CrossRefGoogle Scholar
Cao, S., Rathi, P., Wu, X., Ghim, D., Jun, Y.-S., Singamaneni, S., Adv. Mater. (forthcoming).Google Scholar
Bucciantini, M., Giannoni, E., Chiti, F., Baroni, F., Formigli, L., Zurdo, J., Taddei, N., Ramponi, G., Dobson, C.M., Stefani, M., Nature 416, 507 (2002).CrossRefGoogle Scholar
Kelly, J.W., Nat. Struct. Biol. 9, 323 (2002).CrossRefGoogle Scholar
Wasmer, C., Lange, A., Van Melckebeke, H., Siemer, A.B., Riek, R., Meier, B.H., Science 319, 1523 (2008).CrossRefGoogle Scholar
Sawaya, M.R., Sambashivan, S., Nelson, R., Ivanova, M.I., Sievers, S.A., Apostol, M.I., Thompson, M.J., Balbirnie, M., Wiltzius, J.J., McFarlane, H.T., Nature 447, 453 (2007).CrossRefGoogle Scholar
Smith, J.F., Knowles, T.P., Dobson, C.M., MacPhee, C.E., Welland, M.E., Proc. Natl. Acad. Sci. U.S.A. 103, 15806 (2006).CrossRefGoogle Scholar
Knowles, T.P., Buehler, M.J., Nat. Nanotechnol. 6, 469 (2011).CrossRefGoogle Scholar
Knowles, T.P., Fitzpatrick, A.W., Meehan, S., Mott, H.R., Vendruscolo, M., Dobson, C.M., Welland, M.E., Science 318, 1900 (2007).CrossRefGoogle Scholar
Chapman, M.R., Robinson, L.S., Pinkner, J.S., Roth, R., Heuser, J., Hammar, M., Normark, S., Hultgren, S.J., Science 295, 851 (2002).CrossRefGoogle Scholar
Collinson, S.K., Clouthier, S.C., Doran, J.L., Banser, P.A., Kay, W.W., J. Bacteriol. 178, 662 (1996).CrossRefGoogle Scholar
Fowler, D.M., Koulov, A.V., Alory-Jost, C., Marks, M.S., Balch, W.E., Kelly, J.W., PLoS Biol. 4, e6 (2005).CrossRefGoogle Scholar
Jordens, S., Isa, L., Usov, I., Mezzenga, R., Nat. Commun. 4, 1917 ( 2013).CrossRefGoogle Scholar
Porter, D., Vollrath, F., Adv. Mater. 21, 487 (2009).CrossRefGoogle Scholar
Fu, C.J., Shao, Z.Z., Fritz, V., Chem. Commun. 43, 6515 (2009).CrossRefGoogle Scholar
Ling, S.J., Li, C.X., Adamcik, J., Shao, Z.Z., Chen, X., Mezzenga, R., Adv. Mater. 26, 4569 (2014).CrossRefGoogle Scholar
Knowles, T.P.J., Oppenheim, T.W., Buell, A.K., Chirgadze, D.Y., Welland, M.E., Nat. Nanotechnol. 5, 204 (2010).CrossRefGoogle Scholar
Bolisetty, S., Vallooran, J.J., Adamcik, J., Mezzenga, R., ACS Nano 7, 6146 (2013).CrossRefGoogle Scholar
Shen, Y., Nystrom, G., Mezzenga, R., Adv. Funct. Mater. 27, 1700897 (2017).CrossRefGoogle Scholar
Li, C.X., Adamcik, J., Mezzenga, R., Nat. Nanotechnol. 7, 421 (2012).CrossRefGoogle Scholar
Li, C.X., Bolisetty, S., Mezzenga, R., Adv. Mater. 25, 3694 (2013).CrossRefGoogle Scholar
Hu, B., Shen, Y., Adamcik, J., Fischer, P., Schneider, M., Loessner, M.J., Mezzenga, R., ACS Nano 12, 3385 (2018).CrossRefGoogle Scholar
Hu, B., Yu, S.J., Shi, C., Gu, J., Shao, Y., Chen, Q., Li, Y.Q., Mezzenga, R., ACS Nano 14, 2760 (2020).CrossRefGoogle Scholar
Axpe, E., Duraj-Thatte, A., Chang, Y., Kaimaki, D.M., Sanchez-Sanchez, A., Caliskan, H.B., Courchesne, N.M.D., Joshi, N.S., ACS Biomater. Sci. Eng. 4, 2100 (2018).CrossRefGoogle Scholar
Bolisetty, S., Boddupalli, C.S., Handschin, S., Chaitanya, K., Adamcik, J., Saito, Y., Manz, M.G., Mezzenga, R., Biomacromolecules 15, 2793 (2014).CrossRefGoogle Scholar
Shen, Y., Posavec, L., Bolisetty, S., Hilty, F.M., Nystrom, G., Kohlbrecher, J., Hilbe, M., Rossi, A., Baumgartner, J., Zimmermann, M.B., Mezzenga, R., Nat. Nanotechnol. 12, 642 (2017).CrossRefGoogle Scholar
Bächinger, H.P., Collagen: Primer in Structure, Processing and Assembly (Springer Science and Business Media, Berlin, Germany, 2005), vol. 247.Google Scholar
Daamen, W.F., Veerkamp, J., Van Hest, J., Van Kuppevelt, T., Biomaterials 28, 4378 (2007).CrossRefGoogle Scholar
Vasconcelos, A., Cavaco-Paulo, A., Curr. Drug Targets 14, 612 (2013).CrossRefGoogle Scholar
Ferraro, V., Carvalho, A.P., Piccirillo, C., Santos, M.M., Castro, P.M., Pintado, M.E., Mater. Sci. Eng. C 33, 3111 (2013).CrossRefGoogle Scholar
Daamen, W.F., Hafmans, T., Veerkamp, J.H., Kuppevelt, T.H.V., Tissue Eng. 11, 1168 (2005).CrossRefGoogle Scholar
Huda, S., Yang, Y., J. Polym. Environ. 17, 131 (2009).CrossRefGoogle Scholar
Marchisio, V.F., “Keratinophilic Fungi: Their Role in Nature and Degradation of Keratinic Substrates,” in Biology of Dermatophytes and Other Keratinophilic Fungi (Revista Iberoamericana de Micología, Bilbao, Spain), vol. 17, p. 86 (2000).Google Scholar
Hill, P., Brantley, H., Van Dyke, M., Biomaterials 31, 585 (2010).CrossRefGoogle ScholarPubMed
Lee, C.-H., Yun, Y.J., Cho, H., Lee, K.S., Park, M., Kim, H.Y., Son, D.I., J. Mater. Chem. C 6, 7847 (2018).CrossRefGoogle Scholar
Cataldi, P., Condurache, O., Spirito, D., Krahne, R., Bayer, I.S., Athanassiou, A., Perotto, G., ACS Sustain. Chem. Eng. 7, 12544 (2019).Google Scholar
Ghaffari, R., Eslahi, N., Tamjid, E., Simchi, A., ACS Appl. Mater. Interfaces 10, 19336 (2018).CrossRefGoogle Scholar
Li, J., Liu, X., Zhang, J., Zhang, Y., Han, Y., Hu, J., Li, Y., J. Biomed. Mater. Res. Part B 100, 896 (2012).CrossRefGoogle Scholar
Li, J.-S., Li, Y., Liu, X., Zhang, J., Zhang, Y., J. Mater. Chem. B 1, 432 (2013).CrossRefGoogle Scholar
Reichl, S., Biomaterials 30, 6854 (2009).CrossRefGoogle Scholar
Burnett, L.R., Rahmany, M.B., Richter, J.R., Aboushwareb, T.A., Eberli, D., Ward, C.L., Orlando, G., Hantgan, R.R., Van Dyke, M.E., Biomaterials 34, 2632 (2013).CrossRefGoogle Scholar
Burnett, L.R., Richter, J.G., Rahmany, M.B., Soler, R., Steen, J.A., Orlando, G., Abouswareb, T., Van Dyke, M.E., J. Biomater. Appl. 28, 869 (2014).CrossRefGoogle Scholar
Sun, Z., Chen, X., Ma, X., Cui, X., Yi, Z., Li, X., J. Mater. Chem. B 6, 6133 (2018).CrossRefGoogle Scholar
Saravanan, K., Dhurai, B., J. Text. Appar. Technol. Manag. 7 (2012).Google Scholar
Zhan, M., Wool, R.P., Compos. Part A Appl. Sci. Manuf. 47, 22 (2013).CrossRefGoogle Scholar
Arshad, M., Kaur, M., Ullah, A., ACS Sustain. Chem. Eng. 4, 1785 (2016).CrossRefGoogle Scholar
Kaur, M., Arshad, M., Ullah, A., ACS Sustain. Chem. Eng. 6, 1977 (2018).CrossRefGoogle Scholar
Song, K., Xu, H., Xie, K., Yang, Y., ACS Sustain. Chem. Eng. 5, 5669 (2017).CrossRefGoogle Scholar
Ushiki, T., Arch. Histol. Cytol. 65, 109 (2002).CrossRefGoogle Scholar
Toroian, D., Lim, J.E., Price, P.A., J. Biol. Chem. 282, 22437 (2007).CrossRefGoogle Scholar
Qi, Y., Mai, S., Ye, Z., Aparicio, C., Mater. Lett. 274, 127982 (2020).CrossRefGoogle Scholar
Niu, L.n., Jiao, K., Qi, Y.p., Yiu, C.K., Ryou, H., Arola, D.D., Chen, J.h., Breschi, L., Pashley, D.H., Tay, F.R., Angew. Chem. Int. Ed. 123, 11892 (2011).Google Scholar
Kidoaki, S., Kwon, I.K., Matsuda, T., Biomaterials 26, 37 (2005).CrossRefGoogle Scholar
Cudjoe, E., Younesi, M., Cudjoe, E., Akkus, O., Rowan, S.J., Biomacromolecules 18, 1259 (2017).CrossRefGoogle Scholar
Wang, E., Lee, S.-H., Lee, S.-W., Biomacromolecules 12, 672 (2011).CrossRefGoogle Scholar
Wang, E., Desai, M.S., Lee, S.-W., Nano Lett. 13, 2826 (2013).CrossRefGoogle Scholar