Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T19:49:38.708Z Has data issue: false hasContentIssue false

Processing and Properties of Polymers Modified by Clays

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Layered smectite nanoclays are being developed for incorporation into a variety of host polymer systems. Nanoscopic phase distribution can impart enhanced stiffness at low addition levels and improve barrier and flame-retardant properties. When combined with other inorganic and organic modifiers, nanoclays can provide synergies to generate the desired formulation properties and cost/per form ance characteristics. Developments with existing nanoclay products using conventional amine chemistries are described for thermoplastic, thermoset, and rubber formulations. Nanoclays are demonstrating unique, multidimensional per form ance and proc essing capabilities. Commercial applications are emerging in a variety of diverse markets ranging from automotive to packaging.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Giannelis, E.P., Appl. Organomet. Chem. 12, 675 (1998).3.0.CO;2-V>CrossRefGoogle Scholar
2.LeBaron, P.C., Wang, Z.W., Pinnavaia, T.J., Appl. Clay Sci. 15, 11 (1999).CrossRefGoogle Scholar
3.Garces, J.M. et al., Adv. Mater. 12, 1835 (2000).3.0.CO;2-T>CrossRefGoogle Scholar
4.Alexandre, M., Dubois, P., Mater. Sci. Eng. 28, 1 (2000).CrossRefGoogle Scholar
5.Ray, S.S., Okamoto, M., Prog. Polym. Sci. 28, 1539 (2003).Google Scholar
6.van Olphen, H., An Introduction to Clay Colloid Chemistry (Wiley, New York, 1977).Google Scholar
7.Grim, R.E., Clay Mineralogy (McGraw-Hill, New York, 1968).Google Scholar
8.Yariv, S., Cross, H., Organo-Clay Complexes and Interactions (Marcel Dekker, New York, 2002).Google Scholar
9.Lagaly, G., Naturwissenschaften 68, 82 (1981).CrossRefGoogle Scholar
10.Hackett, E., Manias, E., Giannelis, E.P., J. Chem. Phys. 108, 7410 (1998).CrossRefGoogle Scholar
11.Jordon, J.W., Williams, F.J., Kolloid-Zeitschrift 137, 40 (1954).CrossRefGoogle Scholar
12.Dennis, H.D. et al., Polymer 42, 9513 (2001).CrossRefGoogle Scholar
13.Fasulo, P.D., Rodgers, W.R., Ottaviani, R.A., Hunter, D.L., Polym. Eng. Sci. 44, 1036 (2004).CrossRefGoogle Scholar
14. Technical information about Cloisite nanoclays can be found at www.nanoclay.com.Google Scholar
15.Lee, H., Fasulo, P.D., Rodgers, W.R., Paul, D.R., Polymer 46, 11673 (2005).CrossRefGoogle Scholar
16.Lee, H., Fasulo, P.D., Rodgers, W.R., Paul, D.R., Polymer 47, 3528 (2006).CrossRefGoogle Scholar
17.Hotta, S., Paul, D.R., Polymer 45, 7639 (2004).CrossRefGoogle Scholar
18.Khautua, B.B., Lee, D.J., Kim, H.Y., Kim, J.K., Macromolecules 37, 2454 (2004).CrossRefGoogle Scholar
19.Karim, A., Yurekli, K., Krishnamoorti, R., Proc. NATAS Annu. Conf. Thermal Analysis and Applications 29, 114 (2001).Google Scholar
20.Gelfer, M.Y., Song, H.H., Liu, L., Hsiao, B.S., Chu, B., Rafailovich, M., Si, M., Zaitsev, V., J. Polym. Sci., Part B: Polym. Phys. 41, 44 (2003).CrossRefGoogle Scholar
21.Rodgers, B., Webb, R.W., Weng, W., ACS Rubber Div. Meet., paper 58 (November 2005).Google Scholar
22.Xie, W. et al., Chem. Mater. 13 2979 (2001).CrossRefGoogle Scholar