Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T20:35:34.443Z Has data issue: false hasContentIssue false

Probing bonding and electronic structure at atomic resolution with spectroscopic imaging

Published online by Cambridge University Press:  13 January 2012

Gianluigi A. Botton*
Affiliation:
Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario; [email protected]
Get access

Abstract

By measuring the energy losses of high-energy electrons transmitted through a thin sample, electron energy-loss spectroscopy provides information on the local electronic structure in materials. Using electron beams smaller than 0.1 nm, the technique provides exquisite sensitivity to changes in valence and coordination of the excited atoms such that local changes in the bonding environment are probed with a resolution approaching the Ångstrøm level, with an energy resolution competitive with complementary techniques such as x-ray absorption spectroscopy. With the development of spectroscopic imaging in the scanning transmission electron microscope, this technique can be used to map, at the atomic level, the composition of atomic columns and the valence of atoms at defects, interfaces, and surfaces. Recent applications of this technique are provided as examples showing the potential of the method for materials research.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Krivanek, O.L., Ahn, C.C., Keeney, R.B., Ultramicroscopy 22, 103 (1987).Google Scholar
2.Krivanek, O.L., Gubbens, A.J., Dellby, N., Microsc. Microanal. Microstruct. (EDP Sciences, New York, 1991).Google Scholar
3.Raether, H., Excitations of Plasmons and Interband Transitions by Electrons (Springer-Verlag, New York, 1980).Google Scholar
4.Fink, J., in Unoccupied Electronic States, Fuggle, J.C., Inglesfield, J.E., Eds. (Springer-Verlag, Berlin, 1992), p. 139.Google Scholar
5.Terauchi, M., Tanaka, M., Tsuno, K., Ishida, M., J. Microsc. 194, 203 (1999).Google Scholar
6.Fink, J., Adv. Electron. Electron Phys. 75, 121 (1989).Google Scholar
7.Egerton, R.F., Electron Energy-Loss Spectroscopy in the Electron Microscope (Springer, New York, 2011).Google Scholar
8.Egerton, R.F., Ultramicroscopy (2012), in press.Google Scholar
9.Botton, G.A., in Science of Microscopy, Hawkes, P., Spence, J.C.H., Eds. (Springer, New York, 2007).Google Scholar
10.Radtke, G., Botton, G.A., in STEM, Nellist, P., Pennycook, S.J., Eds. (Springer, New York, 2010).Google Scholar
11.Garvie, L.A.J., Craven, A.J., Brydson, R., Am. Mineral. 79, 411 (1994).Google Scholar
12.Fallon, P.J., Brown, L.M., Diamond Relat. Mater. 2, 1004 (1993).Google Scholar
13.Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J., Sutton, A.P., Phys. Rev. B 57, 1505 (1998).Google Scholar
14.Radtke, G., Saul, A., Dabkowska, H.A., Luke, G.M., Botton, G.A., Phys. Rev. Lett. 105, 036401 (2010).Google Scholar
15.Lazar, S., Botton, G.A., Zandbergen, H.W., Ultramicroscopy 106, 1091 (2006).Google Scholar
16.Lazar, S., Botton, G.A., Wu, M.-Y., Tichelaar, F.D., Zandbergen, H.W., Ultramicroscopy 96, 535 (2003).Google Scholar
17.Stöger-Pollach, M., Franco, H., Schattschneider, P., Lazar, S., Schaffer, B., Grogger, W., Zandbergen, H.W., Micron 37, 396 (2006).CrossRefGoogle Scholar
18.Stöger-Pollach, M., Micron 41, 577 (2011).Google Scholar
19.Stöger-Pollach, M., Micron 39, 1092 (2008).Google Scholar
20.Rossouw, D., Couillard, M., Vickery, J., Kumacheva, E., Botton, G.A., Nano Lett. 11, 1499 (2011).Google Scholar
21.Nicholls, R.J., Pankhurst, D.A., Botton, G.A., Lazar, S., Cockayne, D.J.H., in Electron Microscopy and Analysis 2003 (Institute of Physics Conference Series, 2004), Vol. 179, pp. 443446.Google Scholar
22.Sefat, A.S., Amow, G., Wu, M.-Y., Botton, G.A., Greedan, J.E., J. Solid State Chem. 178, 1008 (2005).Google Scholar
23.Abbate, M., de Groot, F.M.F., Fuggle, J.C., Fujimori, A., Tokura, Y., Fujishima, Y., Strebel, O., Domke, M., Kaindl, G., van Elp, J., Thole, B.T., Sawatzky, G.A., Sacchi, M., Tsuda, K., Phys. Rev. B 44, 5419 (1991).CrossRefGoogle Scholar
24.Kimoto, K., Asaka, T., Nagai, T., Saito, M., Matsui, Y., Ishizuka, K., Nature 450, 702 (2007).Google Scholar
25.Bosman, M., Keast, V.J., Garcia-Munoz, J.L., D’Alfonso, A.J., Findlay, S.D., Allen, L.J., Phys. Rev. Lett. 99, 086102 (2007).Google Scholar
26.Muller, D.A., Kourkoutis, L.F., Murfitt, M.F., Song, J.H., Hwang, H.Y., Silcox, J., Dellby, N., Krivanek, O.L., Science 319, 1073 (2008).Google Scholar
27.Botton, G.A., Lazar, S., Dwyer, C., Ultramicroscopy 110, 926 (2010).Google Scholar
28.Lazar, S., Shao, Y., Gunawan, L., Nechache, R., Pignolet, A., Botton, G.A., Microsc. Microanal. 16, 416 (2010).Google Scholar
29.Gautreau, O., Harnagea, C., Pintille, L., Alexe, M., Pignolet, A., J. Phys. D 41, 112002 (2008).Google Scholar
30.Gazquez, J., Luo, W., Oxley, M.P., Prange, M., Torija, M.A., Sharma, M., Leighton, C., Panteledes, S.T., Pennycook, S.J., Varela, M., Nano Lett. 11, 973 (2011).Google Scholar
31.Haruta, M., Kurata, H., Komatsu, H., Shimakawa, Y., Isoda, S., Phys. Rev. B 80, 165123 (2009).Google Scholar
32.Haruta, M., Kurata, H., Matsumoto, K., Inoue, S., Shimakawa, Y., Isoda, S., J. Appl. Phys. 110, 033708 (2011).Google Scholar
33.Fitting Kourkoutis, L., Lee, J.H., Song, J.H., Hwang, H.Y., Schlom, D.G., Muller, D.A., Microsc. Microanal. 16 (Supp. 2), 1400 (2010).Google Scholar
34.Fitting Kourkoutis, L., in 17th International Microscopy Congress, Rio De Janeiro (2010), pp. 354355.Google Scholar
35.Fitting Kourkoutis, L., Philos. Mag. 80, 4731 (2010).Google Scholar
36.Tan, H., Turner, S., Yücelen, E., Verbeeck, J., Van Tandeloo, G., Phys. Rev. Lett. 107, 107602 (2011).Google Scholar
37.Turner, S., Lazar, S., Freitag, B., Egoavil, R., Verbeeck, J., Put, S., Strauven, Y., Van Tandeloo, G., Nanoscale 3, 3385 (2011).Google Scholar