Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-20T02:38:06.888Z Has data issue: false hasContentIssue false

Printing mesoscale architectures

Published online by Cambridge University Press:  09 November 2015

Jordan R. Raney
Affiliation:
Harvard University, USA; [email protected]
Jennifer A. Lewis
Affiliation:
Harvard University, USA; [email protected]
Get access

Abstract

The ability to pattern materials in three dimensions is crucial for structural, optical, electronic, and energy applications. Three-dimensional printing allows one to design and rapidly fabricate materials in complex shapes without the need for expensive tooling, dies, or lithographic masks. A growing palette of printable materials, coupled with the ability to programmably control mesoscale architecture, open new avenues for creating designer materials with unprecedented performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhang, X., Jiang, X.N., Sun, C., Sens. Actuators A Phys. 77, 149 (1999).CrossRefGoogle Scholar
Smay, J.E., Cesarano, J. III, Lewis, J.A., Langmuir 18, 5429 (2002).CrossRefGoogle Scholar
Gratson, G.M., Xu, M., Lewis, J.A., Nature 428, 386 (2004).CrossRefGoogle Scholar
Gratson, G.M., Garcia-Santamaria, F., Lousse, V., Xu, M., Fan, S., Lewis, J.A., Braun, P.V., Adv. Mater. 18, 461 (2006).CrossRefGoogle Scholar
Therriault, D., Shepherd, R.F., White, S.R., Lewis, J.A., Adv. Mater. 17, 395 (2005).CrossRefGoogle Scholar
Lewis, J.A., Adv. Funct. Mater. 16, 2193 (2006).CrossRefGoogle Scholar
Ahn, B.Y., Duoss, E.B., Motala, M.J., Guo, X., Park, S.-I., Xiong, Y., Yoon, J., Nuzzo, R.G., Rogers, J.A., Lewis, J.A., Science 323, 1590 (2009).CrossRefGoogle Scholar
Schaedler, T.A., Jacobsen, A.J., Torrents, A., Sorensen, A.E., Lian, J., Greer, J.R., Valdvit, L., Carter, W.B., Science 334, 962 (2011).CrossRefGoogle Scholar
Billiet, T., Vandenhaute, M., Schelfhout, J., van Vlierberghe, S., Dubruel, P., Biomaterials 33, 6020 (2012).CrossRefGoogle Scholar
Rohrig, M., Thiel, M., Worgull, M., Holscher, H., Small 8, 3009 (2012).CrossRefGoogle Scholar
Ivanova, O., Williams, C., Campbell, T., Rapid Prototyp. J. 19, 353 (2013).CrossRefGoogle Scholar
Jang, D., Meza, L.R., Greer, F., Greer, J.R., Nat. Mater. 12, 893 (2013).CrossRefGoogle Scholar
Frazier, W.E., J. Mater. Eng. Perform. 23, 1917 (2014).CrossRefGoogle Scholar
Farahani, R.D., Chizari, K., Therriault, D., Nanoscale 6, 10470 (2014).CrossRefGoogle Scholar
Sachs, E., Cima, M., Williams, P., Brancazio, D., Cornie, J., J. Eng. Ind. Trans. ASME 114, 481 (1992).CrossRefGoogle Scholar
Song, J.H., Edirisinghe, M.J., Evans, J.R.G., J. Am. Ceram. Soc. 82, 3374 (1999).CrossRefGoogle Scholar
Mott, M., Evans, J.R.G., Mater. Sci. Eng. A 271, 344 (1999).CrossRefGoogle Scholar
Tay, B.Y., Edirisinghe, M.J., J. Mater. Res. 16, 373 (2001).CrossRefGoogle Scholar
Seerden, K.A.M., Reis, N., Evans, J.R.G., Grant, P.S., Halloran, J.W., Derby, B., J. Am. Ceram. Soc. 84, 2514 (2001).CrossRefGoogle Scholar
Cesarano, J. III, Calvert, P., “Freeforming Objects with Low-Binder Slurry,” US Patent 6,027,326 (2000).Google Scholar
Cesarano, J. III, Segalman, R., Calvert, P., Ceram. Ind. 148, 94 (1998).Google Scholar
Crump, S.S., “Apparatus and Method for Creating Three-Dimensional Objects,” US Patent 5,121,329 A (1992).Google Scholar
Crump, S.S., “Modeling Apparatus for Three-Dimensional Objects,” US Patent 5,340,433 A (1994).Google Scholar
Smay, J.E., Gratson, G.M., Sheperd, R.F., Cesarano, J. III, Lewis, J.A., Adv. Mater. 14, 1279 (2002).3.0.CO;2-A>CrossRefGoogle Scholar
Li, Q., Lewis, J.A., Adv. Mater. 15, 1639 (2003).CrossRefGoogle Scholar
Therriault, D., White, S.R., Lewis, J.A., Nat. Mater. 2, 265 (2003).CrossRefGoogle Scholar
Tuttle, B.A., Smay, J.E., Cesarano, J. III, Voigt, J.A., Scofield, T.W., Olson, W.R., Lewis, J.A., J. Am. Ceram. Soc. 84, 872 (2001).CrossRefGoogle Scholar
Smay, J.E., Cesarano, J. III, Tuttle, B.A., Lewis, J.A., J. Am. Ceram. Soc. 87, 293 (2004).CrossRefGoogle Scholar
Sun, K., Wei, T.-S., Ahn, B.Y., Seo, J.Y., Dillon, S.J., Lewis, J.A., Adv. Mater. 25, 4539 (2013).CrossRefGoogle Scholar
Bakhtina, N.A., Loeffelmann, U., MacKinnon, N., Korvink, J.G., Adv. Funct.Mater. 25, 1683 (2015).CrossRefGoogle Scholar
Cumpston, B.H., Ananthavel, S.P., Barlow, S., Dyer, D.L., Ehrlich, J.E., Erskine, L.L., Heikal, A.A., Kuebler, S.M., Lee, I.-Y.S., McCord-Maughon, D., Qin, J., Rockel, H., Rumi, M., Wu, X.-L., Marder, S.R., Perry, J.W., Nature 398, 51 (1999).CrossRefGoogle Scholar
Hull, C.W., “Apparatus for Production of Three-Dimensional Objects by Stereolithography,” US Patent 4,575,330 (1986).Google Scholar
Jacobs, P.F., Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography (Society of Manufacturing Engineers, Dearborn, MI, 1992).Google Scholar
Hull, C., Feygin, M., Baron, Y., Sanders, R., Sachs, E., Lightman, A., Wohlers, T., Rapid Prototyp. J. 1, 11 (1995).CrossRefGoogle Scholar
Sun, C., Fang, N., Wu, D.M., Zhang, X., Sens. Actuators A Phys. 121, 113 (2005).CrossRefGoogle Scholar
Kumar, S., JOM 55, 43 (2003).CrossRefGoogle Scholar
Heinl, P., Rottmair, A., Korner, C., Singer, R.F., Adv. Eng. Mater. 9, 360 (2007).CrossRefGoogle Scholar
Harrysson, O.L.A., Cansizoglu, O., Marcellin-Little, D.J., Cormier, D.R., West, H.A. II, Mater. Sci. Eng. C 28, 366 (2008).CrossRefGoogle Scholar
Buckmann, T., Stenger, N., Kadic, M., Kaschke, J., Frolich, A., Kennerknecht, T., Eberl, C., Thiel, M., Wegener, M., Adv. Mater. 24, 2710 (2012).CrossRefGoogle Scholar
Yablonovitch, E., Phys. Rev. Lett. 58, 2059 (1987).CrossRefGoogle Scholar
Joannopoulos, J.D., Villeneuve, P.R., Fan, S., Nature 386, 143 (1997).CrossRefGoogle Scholar
Lin, S.Y., Fleming, J.G., Hetherington, D.L., Smith, B.K., Biswas, R., Ho, K.M., Sigalas, M.M., Zubrzycki, W., Kurtz, S.R., Bur, J., Nature 394, 251 (1998).CrossRefGoogle Scholar
Yablonovitch, E., Sci. Am. 285, 47 (2001).CrossRefGoogle Scholar
Zheng, X., Lee, H., Weisgraber, T.H., Shusteff, M., DeOtte, J., Duoss, E.B., Kuntz, J.D., Biener, M.M., Ge, Q., Jackson, J.A., Kucheyev, S.O., Fang, N.X., Spadaccini, C.M., Science 344, 1373 (2014).CrossRefGoogle Scholar
Compton, B.G., Lewis, J.A., Adv. Mater. 26, 5930 (2014).CrossRefGoogle Scholar
Chai, G.S., Yoon, S.B., Yu, J.-S., Choi, J.-H., Sung, Y.-E., J. Phys. Chem. B 108, 7074 (2004).CrossRefGoogle Scholar
Lu, A.-H., Nitz, J.-J., Comotti, M., Weidenthaler, C., Schlichte, K., Lehmann, C.W., Terasaki, O., Schuth, F., J. Am. Chem. Soc. 132, 14152 (2010).CrossRefGoogle Scholar
Moorthy, J., Beebe, D.J., Lab Chip 3, 62 (2003).CrossRefGoogle Scholar
Li, P., Zong, Y., Zhang, Y., Yang, M., Zhang, R., Li, S., Wei, F., Nanoscale 5, 3367 (2013).CrossRefGoogle ScholarPubMed
Boomsma, K., Poulikakos, D., Zwick, F., Mech. Mater. 35, 1161 (2003).CrossRefGoogle Scholar
Saranathan, V., Osuji, C.O., Mochrie, S.G.J., Noh, H., Narayanan, S., Sandy, A., Dufresne, E.R., Prum, R.O., Proc. Natl. Acad. Sci. U.S.A. 107, 11676 (2010).CrossRefGoogle Scholar
Gibson, L.J., J. R. Soc. Interface 9, 2749 (2012).CrossRefGoogle Scholar
Launey, M.E., Buehler, M.J., Ritchie, R.O., Annu. Rev. Mater. Res. 40, 25 (2010).CrossRefGoogle Scholar
Miserez, A., Schneberk, T., Sun, C., Zok, F.W., Waite, J.H., Science 319, 1816 (2008).CrossRefGoogle Scholar
Weaver, J.C., Milliron, G.W., Miserez, A., Evans-Lutterodt, K., Herrera, S., Gallana, I., Mershon, W.J., Swanson, B., Zavattieri, P., DiMasi, E., Kisailus, D., Science 336, 1275 (2012).CrossRefGoogle Scholar
Wegst, U.G.K., Bai, H., Saiz, E., Tomsia, A.P., Ritchie, R.O., Nat. Mater. 14, 23 (2015).CrossRefGoogle Scholar
Li, L., Weaver, J.C., Ortiz, C., Nat. Commun. 6, 6216 (2015).CrossRefGoogle Scholar
Greiner, A.M., Richter, B., Bastmeyer, M., Macromol. Biosci. 12, 1301 (2012).CrossRefGoogle Scholar
Lin, D., Nian, Q., Deng, B., Jin, S., Hu, Y., Wang, W., Cheng, G.J., ACS Nano 8, 9710 (2014).CrossRefGoogle Scholar
Meza, L.R., Das, S., Greer, J.R., Science 345, 1322 (2014).CrossRefGoogle Scholar
Duoss, E.B., Weisgraber, T.H., Hearon, K., Zhu, C., Small, W. IV, Metz, T.R., Vericella, J.J., Barth, H.D., Kuntz, J.D., Maxwell, R.S., Spadaccini, C.M., Wilson, T.S., Adv. Funct. Mater. 24, 4905 (2014).CrossRefGoogle Scholar
Zhang, P., Toman, J., Yu, Y., Biyikli, E., Kirca, M., Chmielus, M., To, A.C., J. Manuf. Sci. Eng. 137, 021004 (2015).CrossRefGoogle Scholar
Gibson, L.J., Ashby, M.F., Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, UK, 1997).CrossRefGoogle Scholar
Guo, D., Xie, G., Luo, J., J. Phys. D Appl. Phys. 47, 013001 (2014).CrossRefGoogle Scholar
Bian, K., Bassett, W., Wang, Z., Hanrath, T., J. Phys. Chem. Lett. 5, 3688 (2014).CrossRefGoogle Scholar
Lakes, R., Science 235, 1038 (1987).CrossRefGoogle Scholar
Prall, D., Lakes, R.S., Int. J. Mech. Sci. 39, 305 (1996).CrossRefGoogle Scholar
Wang, L., Lau, J., Thomas, E.L., Boyce, M.C., Adv. Mater. 23, 1524 (2011).CrossRefGoogle Scholar
Dimas, L.S., Bratzel, G.H., Eylon, I., Buehler, M.J., Adv. Funct. Mater. 23, 4629 (2013).CrossRefGoogle Scholar
Dimas, L.S., Buehler, M.J., Soft Matter 10, 4436 (2014).CrossRefGoogle Scholar
Guttag, M., Boyce, M.C., Adv. Funct. Mater. 25, 3641 (2015).CrossRefGoogle Scholar
Guo, S.-Z., Yang, X., Heuzey, M.-C., Therriault, D., Nanoscale 7, 6451 (2015).CrossRefGoogle Scholar
Gao, H., Ji, B., Jager, I.L., Arzt, E., Fratzl, P., Proc. Natl. Acad. Sci. U.S.A. 100, 5597 (2003).CrossRefGoogle Scholar
Jain, K., Klosner, M., Zemel, M., Raghunandan, S., Proc. IEEE 93, 1500 (2005).CrossRefGoogle Scholar
Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W., Woo, E.P., Science 290, 2123 (2000).CrossRefGoogle Scholar
Piner, R.D., Zhu, J., Xu, F., Hong, S., Mirkin, C.A., Science 283, 661 (1999).CrossRefGoogle Scholar
Adams, J.J., Duoss, E.B., Malkowski, T.F., Motala, M.J., Ahn, B.Y., Nuzzo, R.G., Bernhard, J.T., Lewis, J.A., Adv. Mater. 23, 1335 (2011).CrossRefGoogle Scholar
Hu, J., Yu, M.-F., Science 329, 313 (2010).CrossRefGoogle Scholar
Chiechi, R.C., Weiss, E.A., Dickey, M.D., Whitesides, G.M., Agnew. Chem. Int. Ed. 47, 142 (2008).CrossRefGoogle Scholar
Dickey, M.D., Chiechi, R.C., Larsen, R.J., Weiss, E.A., Weitz, D.A., Whitesides, G.M., Adv. Funct. Mater. 18, 1097 (2008).CrossRefGoogle Scholar
Ladd, C., So, J.-H., Muth, J., Dickey, M.D., Adv. Mater. 25, 5081 (2013).CrossRefGoogle Scholar
Khan, M.R., Trlica, C., Dickey, M.D., Adv. Funct. Mater. 25, 671 (2015).CrossRefGoogle Scholar
Kong, Y.L., Tamargo, I.A., Kim, H., Johnson, B.N., Gupta, M.K., Koh, T.-W., Chin, H.-A., Steingart, D.A., Rand, B.P., McAlpine, M.C., Nano Lett. 14, 7017 (2014).CrossRefGoogle Scholar
Zaghib, K., Armand, M., Gauthier, M., J. Electrochem. Soc. 145, 3135 (1998).CrossRefGoogle Scholar
Zhang, X., Shyy, W., Sastry, A.M., J. Electrochem. Soc. 154, A910 (2007).CrossRefGoogle Scholar
Lewis, J.A., Ahn, B.Y., Nature 518, 42 (2015).CrossRefGoogle Scholar