Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-24T00:58:23.407Z Has data issue: false hasContentIssue false

Playing with Plasmons: Tuning the Optical Resonant Properties of Metallic Nanoshells

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Nanoshells, concentric nanoparticles consisting of a dielectric core and a metallic shell, are simple spherical nanostructures with unique, geometrically tunable optical resonances. As with all metallic nanostructures, their optical properties are controlled by the collective electronic resonance, or plasmon resonance, of the constituent metal, typically silver or gold. In striking contrast to the resonant properties of solid metallic nanostructures, which exhibit only a weak tunability with size or aspect ratio, the optical resonance of a nanoshell is extraordinarily sensitive to the inner and outer dimensions of the metallic shell layer. The underlying reason for this lies beyond classical electromagnetic theory, where plasmon-resonant nanoparticles follow a mesoscale analogue of molecular orbital theory, hybridizing in precisely the same manner as the individual atomic wave functions in simple molecules. This plasmon hybridization picture provides an essential “design rule” for metallic nanostructures that can allow us to effectively predict their optical resonant properties. Such a systematic control of the far-field optical resonances of metallic nanostructures is accomplished simultaneously with control of the field at the surface of the nanostructure. The nanoshell geometry is ideal for tuning and optimizing the near-field response as a stand-alone surface-enhanced Raman spectroscopy (SERS) nanosensor substrate and as a surface-plasmon-resonant nanosensor.Tuning the plasmon resonance of nanoshells into the near-infrared region of the spectrum has enabled a variety of biomedical applications that exploit the strong optical contrast available with nanoshells in a spectral region where blood and tissue are optimally transparent.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Jana, N.R., Gearheart, L., and Murphy, C.J., J. Phys. Chem. B 105 (2001) p. 4065.CrossRefGoogle Scholar
2.Maillard, M., Giorgio, S., and Pileni, M.P., J. Phys. Chem. B 107 (2003) p. 2466.CrossRefGoogle Scholar
3.Aizpurua, J., Hanarp, P., Sutherland, D.S., Kall, M., Bryant, G.W., and Garcia de Abajo, F.J., Phys. Rev. Lett. 90 057401 (2003).CrossRefGoogle Scholar
4.Charnay, C., Lee, A., Man, S., Moran, C.E., Radloff, C., Bradley, R.K., and Halas, N.J., J. Phys. Chem. B 107 (2003) p. 7327.CrossRefGoogle Scholar
5.Sun, Y. and Xia, Y., Science 298 (2002) p. 2176.CrossRefGoogle Scholar
6.Kelly, K.L., Eduardo, C., Zhao, L.L., and Schatz, G.C., J. Phys. Chem. B 107 (2003) p. 668.CrossRefGoogle Scholar
7.Maier, S.A., Brongersma, M.L., Kik, P.G., and Atwater, H.A., Phys. Rev. B 193408 65 (2002).Google Scholar
8.Prodan, E. and Nordlander, P., Chem. Phys. Lett. 352 (2002) p. 140.CrossRefGoogle Scholar
9.Oubre, C., and Nordlander, P., J. Phys. Chem. B 108 (2004) p. 17740.CrossRefGoogle Scholar
10.Mie, G., Annalen der Physik 25 (1908) p. 377.Google Scholar
11.Yu, Y.-Y., Chang, S.S., Lee, C.-L., and Wang, C.R.C., J. Phys. Chem. B 101 (1997) p. 6661.CrossRefGoogle Scholar
12.Oldenburg, S.J., Averitt, R.D., Westcott, S., and Halas, N.J., Chem. Phys. Lett. 288 (1998) p. 243.CrossRefGoogle Scholar
13.Aden, A.L. and Kerker, , J. App. Phys. 22 (1951) p. 1242.CrossRefGoogle Scholar
14.Averitt, R.D., Sarkar, D., and Halas, N.J., Phys. Rev. Lett. 78 (1997) p. 4217.CrossRefGoogle Scholar
15.Jackson, J.B. and Halas, N.J., J. Phys. Chem. B 105 (2001) p. 2743.CrossRefGoogle Scholar
16.Oldenburg, S.J., Jackson, J.B., Westcott, S.L., and Halas, N.J., App. Phys. Lett. 75 (1999) p. 2897.CrossRefGoogle Scholar
17.Prodan, E., Radloff, C., Halas, N.J., and Nordlander, P., Science 302 (2003) p. 419.CrossRefGoogle Scholar
18.Radloff, C. and Halas, N.J., Nano Lett. 4 (2004) p. 1323.CrossRefGoogle Scholar
19.Stober, W., Fink, A., and Bohn, E., J. Coll. Inter. Sci. 26 (1968) p. 62.CrossRefGoogle Scholar
20.Oldenburg, S.J., Hale, G.D., Jackson, J.B., and Halas, N.J., App. Phys. Lett. 75 (1999) p. 1063.Google Scholar
21.Klimov, V.J., Los Alamos Sci. 28 (2003) p. 214.Google Scholar
22.Jeanmarie, D.L. and Van Duyne, R.P., J. Electroanal. Chem. 84 (1977) p. 1.CrossRefGoogle Scholar
23.Maher, R.C., Cohen, L.F., Etchegoin, P., Hartigan, H.J.N., Brown, R.J.C., and Milton, M.J.T., J. Chem. Phys. 120 (2004) p. 11746.CrossRefGoogle Scholar
24.Kneipp, K., Wang, Y., Kneipp, H., Itzkan, I., Dasar, R.R., and Feld, M.S., M. S. Phys. Rev. Lett. (1996) p. 2444.Google Scholar
25.Michaels, A.M., Jiang, J., and Brus, L., J. Phys. Chem. B 104 (2000) p. 11965.Google Scholar
26.Kneipp, K., Wang, Y., Kneipp, H., Perelman, L.T., Itzkan, I., Dasari, R.R., and Feld, M.S., Phys. Rev. Lett. 78 (1997) p. 1667.Google Scholar
27.Nie, S. and Emory, S.R., Science 275 (1997) p. 1102.Google Scholar
28.Li, K., Stockman, M.I., and Bergman, D.J., Phys. Rev. Lett. 91 (2003) p. 227402.CrossRefGoogle Scholar
29.Jiang, J., Bosnick, K., Maillard, M., and Brus, L., J. Phys. Chem. B 107 (2003) p. 9964.CrossRefGoogle Scholar
30.Gunnarson, L., Bjerneld, E.J., Xu, H., Petronis, S., Kasemo, B., and Kall, M., App. Phys. Lett. 78 (2001) p. 802.CrossRefGoogle Scholar
31.Nordlander, P., Oubre, C., Prodan, E., Li, K., and Stockman, M.I., Nano Lett. 4 (2004) p. 899.CrossRefGoogle Scholar
32.Prodan, E. and Nordlander, P., J. Chem. Phys. 120 (2004) p. 5444.Google Scholar
33.Jackson, J.B., Hirsch, L.R., West, J.L., and Halas, N.J., App. Phys. Lett. 82 (2003) p. 257.CrossRefGoogle Scholar
34.Jackson, J.B. and Halas, N.J., Proc. Natl. Acad. Sci. U.S.A. 101 (2004) p. 17930.CrossRefGoogle Scholar
35.Sun, Y. and Xia, Y., Anal. Chem. 74 (2002) p. 5297.CrossRefGoogle Scholar
36.Prodan, E., Lee, A., and Nordlander, P., Chem. Phys. Lett. 360 (2002) p. 325.CrossRefGoogle Scholar
37.Tam, F., Moran, C., and Halas, N.J., J. Phys. Chem. B 108 (2004) p. 17290.CrossRefGoogle Scholar
38.Hoffman, A.S., Afrassiabi, A., and Dong, L.C., J. Controlled Release 4 (1986) p. 213.CrossRefGoogle Scholar
39.Dong, L.C. and Hoffman, A.S., J. Controlled Release 4 (1986) p. 223.CrossRefGoogle Scholar
40.Sershen, S.R., Westcott, S.L., Halas, N.J., and West, J.L., J. Biomed. Mater. Res. 51 (2000) p. 293.3.0.CO;2-T>CrossRefGoogle Scholar
41.Sershen, S., Westcott, S., Halas, N.J., and West, J.L., App. Phys. Lett. 80 (2002) p. 4609.CrossRefGoogle Scholar
42.Hirsch, L.R., Jackson, J.B., Lee, A., Halas, N.J., and West, J.L., Anal. Chem. 75 (2003) p. 2377.CrossRefGoogle Scholar
43.Hirsch, L.R., Stafford, R.J., Bankson, J.A., Sershen, S., Price, R.E., Hazle, J.D., Halas, N.J., and West, J.L., Proc. Natl. Acad. Sci. U.S.A. 100 (2003) p. 13549.Google Scholar
44.Loo, C.H., Lin, A., Hirsch, L.R., Lee, M.-H., Barton, J., Halas, N.J., West, J.L., and Drezek, R., Tech. Cancer Therapy Treatment 3 (2004) p. 33.Google Scholar
45.O'Neal, P., Hirsch, L.R., Halas, N.J., Payne, J.D., and West, J.L., Cancer Lett. 209 (2004) p. 171.CrossRefGoogle Scholar