Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T02:06:43.209Z Has data issue: false hasContentIssue false

Plasmonics: Metal-worthy methods and materials in nanophotonics

Published online by Cambridge University Press:  15 August 2012

Jennifer A. Dionne
Affiliation:
Stanford University, Department of Materials Science and Engineering; [email protected]
Harry A. Atwater
Affiliation:
California Institute of Technology, Department of Applied Physics, Thomas J. Watson Laboratories; [email protected]
Get access

Abstract

Electrons and photons can coexist as a single entity called a surface plasmon—an elementary excitation found at the interface between a conductor and an insulator. Because of their hybrid electric and photonic nature, plasmons allow photons to be precisely controlled on the nanoscale. Plasmons are evident in the vivid hues of rose windows, which derive their color from small metallic nanoparticles embedded in the glass. They also provide the basis for color-changing biosensors (such as home pregnancy tests), photothermal cancer treatments, improved photovoltaic cell efficiencies, and nanoscale lasers. While surface plasmons were first identified nearly 55 years ago, many of their exciting applications are yet to come. This issue of MRS Bulletin reviews the progress and promise of plasmonics—from the characterization tools that have allowed nanometer-scale probing of plasmons to the new materials that may enable low-loss, active, and quantum plasmonics. Within reach are applications ranging from integrated plasmonic circuits for nanophotonic computation to plasmonic optical tweezers for manipulation of nano-sized particles and proteins.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bohm, D., Pines, D., Phys. Rev. 82, 625 (1951).CrossRefGoogle Scholar
2.Pines, D., Rev. Mod. Phys. 28, 184 (1956).CrossRefGoogle Scholar
3.Ritchie, R.H., Phys. Rev. 106, 874 (1957).CrossRefGoogle Scholar
4.Frank, A.L., Arakawa, E.T., Birkhoff, R.D., Phys. Rev. 126, 1935 (1962).CrossRefGoogle Scholar
5.Barnes, W.L., Dereux, A., Ebbesen, T.W., Nature 424, 824 (2003).CrossRefGoogle Scholar
6.Gramotnev, D.K., Bozhevolnyi, S.I., Nat. Photonics 4, 83 (2010).CrossRefGoogle Scholar
7.Schuller, J.A., Barnard, E.S., Cai, W., Jun, Y.C., White, J.S., Brongersma, M.L., Nat. Mater. 9, 193 (2010).CrossRefGoogle Scholar
8.Stockman, M.I., Phys. Today 64, 39 (2011).CrossRefGoogle Scholar
9.Tanabe, K., J. Phys. Chem. C 112, 15721 (2008).CrossRefGoogle Scholar
10.Miyazaki, H., Kurokawa, Y., Phys. Rev. Lett. 96, 1 (2006).Google Scholar
11.Fleischmann, M., Chem. Phys. Lett. 26, 163 (1974).CrossRefGoogle Scholar
12.Jeanmaire, D., Van Duyne, R., J. Electroanal. Chem 84, 1 (1977).CrossRefGoogle Scholar
13.Moskovits, M., Rev. Mod. Phys. 57, 783 (1985).CrossRefGoogle Scholar
14.Stockman, M.I., Zheludev, N.I., Macdonald, K.F., Sa, Z.L., Nat. Photonics 3, 55 (2009).Google Scholar
15.Berini, P., De Leon, I., Nat. Photonics 6, 16 (2011).CrossRefGoogle Scholar
16.Atwater, H.A., Polman, A., Nat. Mater. 9, 205 (2010).CrossRefGoogle Scholar
17.Polman, A., Atwater, H.A., Nat. Mater. 11, 174 (2012).CrossRefGoogle Scholar
18.Linic, S., Christopher, P., Ingram, D.B., Nat. Mater. 10, 911 (2011).CrossRefGoogle Scholar
19.Thomann, I., Pinaud, B.A., Chen, Z., Clemens, B.M., Jaramillo, T.F., Brongersma, M.L., Nano Lett. 11, 3440 (2011).CrossRefGoogle Scholar
20.Novo, C., Funston, A.M., Mulvaney, P., Nat. Nanotechnol. 3, 598 (2008).CrossRefGoogle Scholar
21.Hill, M.T., Oei, Y.-S., Smalbrugge, B., Zhu, Y., De Vries, T., Van Veldhoven, P.J., Van Otten, F.W.M., Eijkemans, T.J., Turkiewicz, J.P., De Waardt, H., Geluk, E.J., Kwon, S.-H., Lee, Y.-H., Notzel, R., Smit, M.K., Nat. Photonics 1, 589 (2007).CrossRefGoogle Scholar
22.Ma, R.M., Oulton, R.F., Sorger, V.J., Bartal, G., Zhang, X., Nat. Mater. 10, 2 (2010).Google Scholar
23.Khajavikhan, M., Simic, A., Katz, M., Lee, J.H., Slutsky, B., Mizrahi, A., Lomakin, V., Fainman, Y., Nature 482, 204 (2012).CrossRefGoogle Scholar
24.Oulton, R.F., Sorger, V.J., Zentgraf, T., Ma, R.-M., Gladden, C., Dai, L., Bartal, G., Zhang, X., Nature 461, 629 (2009).CrossRefGoogle Scholar
25.Liu, N., Hentschel, M., Weiss, T., Alivisatos, A.P., Giessen, H., Science 332, 1407 (2011).CrossRefGoogle Scholar
26.Sönnichsen, C., Reinhard, B.M., Liphardt, J., Alivisatos, A.P., Nat. Biotechnol. 23, 741 (2005).CrossRefGoogle Scholar
27.Shalaev, V.M., Nat. Photonics 1, 41 (2007).CrossRefGoogle Scholar
28.Ni, X., Emani, N.K., Kildishev, A.V., Boltasseva, A., Shalaev, V.M., Science 335, 427 (2012).CrossRefGoogle Scholar
29.Fan, J.A., Wu, C., Bao, K., Bao, J., Bardhan, R., Halas, N.J., Manoharan, V.N., Nordlander, P., Shvets, G., Capasso, F., Science 328, 1135 (2010).CrossRefGoogle Scholar
30.Urzhumov, Y.A., Shvets, G., Fan, J., Capasso, F., Brandl, D., Nordlander, P., Opt. Express 15, 14129 (2007).CrossRefGoogle Scholar
31.Shin, H., Fan, S., Phys. Rev. Lett. 96, 1 (2006).Google Scholar
32.Xia, Y., Halas, N.J., MRS Bull. 30, 5 (2005).CrossRefGoogle Scholar
33.Dionne, J.A., PhD thesis, California Institute of Technology (2009).Google Scholar
34.Anker, J.N., Hall, W.P., Nilam, C., Zhao, J., Van, P., Nat. Mater. 7, 8 (2008).CrossRefGoogle Scholar
35.Pacifici, D., Lezec, H.J., Atwater, H.A., Nat. Photonics 1, 402 (2007).CrossRefGoogle Scholar
36.Bozhevolnyi, S.I., Volkov, V.S., Devaux, E., Laluet, J.-Y., Ebbesen, T.W., Nature 440, 508 (2006).CrossRefGoogle Scholar
37.Gramotnev, D.K., Pile, D.F.P., Appl. Phys. Lett. 85, 6323 (2004).CrossRefGoogle Scholar
38.Dionne, J., Sweatlock, L., Atwater, H., Polman, A., Phys. Rev. B 73, 1 (2006).CrossRefGoogle Scholar
39.Zia, R., Selker, M.D., Catrysse, P.B., Brongersma, M.L., J. Opt. Soc. Am. A 21, 2442 (2004).CrossRefGoogle Scholar
40.Oulton, R.F., Sorger, V.J., Genov, D.A., Pile, D.F.P., Zhang, X., Nat. Photonics 2, 496 (2008).CrossRefGoogle Scholar
41.Waele, D., Burgos, S.P., Polman, A., Atwater, H.A., Nano Lett. 9 (8), 2832 (2009).CrossRefGoogle Scholar
42.Saleh, A.A.E., Dionne, J.A., Phys. Rev. B 85, 1 (2012).CrossRefGoogle Scholar
43.Dionne, J.A., Diest, K., Sweatlock, L.A., Atwater, H.A., Nano Lett. 9, 897 (2009).CrossRefGoogle Scholar
44.Cai, W., White, J.S., Brongersma, M.L., Nano Lett. 9 (12), 4403 (2009).CrossRefGoogle Scholar
45.Dionne, J.A., Lezec, H.J., Atwater, H.A., Nano Lett. 6, 1928 (2006).CrossRefGoogle Scholar
46.Burgos, S.P., de Waele, R., Polman, A., Atwater, H.A., Nat. Mater. 9, 407 (2010).CrossRefGoogle Scholar
47.Noginov, M.A., Zhu, G., Belgrave, A.M., Bakker, R., Shalaev, V.M., Narimanov, E.E., Stout, S., Herz, E., Suteewong, T., Wiesner, U., Nature 460, 1110 (2009).CrossRefGoogle Scholar
48.Stockman, M.I., J. Opt. 12, 024004 (2010).CrossRefGoogle Scholar
49.Alonso-González, P., Albella, P., Schnell, M., Chen, J., Huth, F., Garcia-Etxarri, A., Casanova, F., Golmar, F., Arzubiaga, L., Hueso, L.E., Aizpurua, J., Hillenbrand, R., Nat. Commun. 3, 684 (2012).CrossRefGoogle Scholar
50.Kinkhabwala, A., Yu, Z., Fan, S., Avlasevich, Y., Müllen, K., Moerner, W.E., Nat. Photonics 3, 654 (2009).CrossRefGoogle Scholar
51.Curto, A.G., Volpe, G., Taminiau, T.H., Kreuzer, M.P., Quidant, R., van Hulst, N.F., Science 329, 930 (2010).CrossRefGoogle Scholar
52.Alù, A., Engheta, N., Nat. Photonics 2, 307 (2008).CrossRefGoogle Scholar
53.Knight, M.W., Sobhani, H., Nordlander, P., Halas, N.J., Science 332, 702 (2011).CrossRefGoogle Scholar
54.Sheldon, M., Atwater, H.A., Condens. Matter, in press (available athttp://arxiv.org/abs/1202.0301).Google Scholar
55.Dionne, J.A., Sweatlock, L.A., Sheldon, M.T., Alivisatos, A.P., Atwater, H.A., IEEE J. Sel. Top. Quantum Electron. 16, 295 (2010).CrossRefGoogle Scholar
56.Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., Chu, S., Opt. Lett. 11, 288 (1986).CrossRefGoogle Scholar
57.Ashkin, A., Dziedzic, J.M., Yamane, T., Nature 330, 769 (1987).CrossRefGoogle Scholar
58.Bustamante, C., Bryant, Z., Smith, S.B., Nature 421, 423 (2003).CrossRefGoogle Scholar
59.Smith, P.W., Ashkin, A., Tomlinson, W.J., Opt. Lett. 6, 284 (1981).CrossRefGoogle Scholar
60.Juan, M.L., Righini, M., Quidant, R., Nat. Photonics 5, 349 (2011).CrossRefGoogle Scholar
61.Grigorenko, A.N., Roberts, N.W., Dickinson, M.R., Zhang, Y., Nat. Photonics 2, 365 (2008).CrossRefGoogle Scholar
62.Volpe, G., Quidant, R., Badenes, G., Petrov, D., Phys. Rev. Lett. 96, 1 (2006).CrossRefGoogle Scholar
63.Righini, M., Ghenuche, P., Cherukulappurath, S., Myroshnychenko, V., García de Abajo, F.J., Quidant, R., Nano Lett. 9, 3387 (2009).CrossRefGoogle Scholar
64.Zhang, W., Huang, L., Santschi, C., Martin, O.J.F., Nano Lett. 10, 1006 (2010).CrossRefGoogle Scholar
65.Wang, K., Schonbrun, E., Steinvurzel, P., Crozier, K.B., Nat. Commun. 2, 469 (2011).CrossRefGoogle Scholar
66.Chen, C., Juan, M.L., Li, Y., Maes, G., Borghs, G., Van Dorpe, P., Quidant, R., Nano Lett. 12, 125 (2012).CrossRefGoogle Scholar
67.Pang, Y., Gordon, R., Nano Lett. 12, 402 (2012).CrossRefGoogle Scholar
68.Sainidou, R., García de Abajo, F., Phys. Rev. Lett. 101, 1 (2008).CrossRefGoogle Scholar
69.Yang, X., Liu, Y., Oulton, R.F., Yin, X., Zhang, X., Nano Lett. 11, 321 (2011).CrossRefGoogle Scholar
70.Gordon, M.P., Ha, T., Selvin, P.R., Proc. Natl. Acad. Sci. U.S.A. 101, 6462 (2004).CrossRefGoogle Scholar
71.Yildiz, A., Forkey, J.N., McKinney, S.A., Ha, T., Goldman, Y.E., Selvin, P.R., Science 300, 2061 (2003).CrossRefGoogle Scholar
72.Thompson, R.E., Larson, D.R., Webb, W.W., Biophys. J. 82, 2775 (2002).CrossRefGoogle Scholar
73.Weber, M.L., Willets, K.A., J. Phys. Chem. Lett. 2, 1766 (2011).CrossRefGoogle Scholar
74.Stranahan, S.M., Willets, K.A., Nano Lett. 10, 3777 (2010).CrossRefGoogle Scholar
75.Cang, H., Labno, A., Lu, C., Yin, X., Liu, M., Gladden, C., Liu, Y., Zhang, X., Nature 469, 385 (2011).CrossRefGoogle Scholar
76.Wu, D., Liu, Z., Sun, C., Zhang, X., Nano Lett. 8, 1159 (2008).CrossRefGoogle Scholar
77.García de Abajo, F.J., Rev. Mod. Phys. 82, 209 (2010).CrossRefGoogle Scholar
78.Batson, P.E., Phys. Rev. Lett. 49, 936 (1982).CrossRefGoogle Scholar
79.Nelayah, J., Kociak, M., Stephan, O., García de Abajo, F.J., Tence, M., Henrard, L., Taverna, D., Pastoriza-Santos, I., Liz-Marzan, L.M., Colliex, C., Nat. Phys. 3, 348 (2007).CrossRefGoogle Scholar
80.Koh, A.L., Fernández-Domínguez, A.I., McComb, D.W., Maier, S.A., Yang, J.K.W., Nano Lett. 11, 1323 (2011).CrossRefGoogle Scholar
81.Yurtsever, A., van der Veen, R.M., Zewail, A.H., Science 335, 59 (2012).CrossRefGoogle Scholar
82.Scholl, J.A., Koh, A.L., Dionne, J.A., Nature 483, 421 (2012).CrossRefGoogle Scholar
83.van Wijngaarden, J.T., Verhagen, E., Polman, A., Ross, C.E., Lezec, H.J., Atwater, H.A., Appl. Phys. Lett. 88, 221111 (2006).CrossRefGoogle Scholar
84.Bashevoy, M.V., Jonsson, F., Krasavin, A.V., Zheludev, N.I., Chen, Y., Stockman, M.I., Nano Lett. 6, 1113 (2006).CrossRefGoogle Scholar
85.Coenen, T., Vesseur, E.J.R., Polman, A., Appl. Phys. Lett. 99, 143103 (2011).CrossRefGoogle Scholar
86.Hofmann, C.E., Vesseur, E.J.R., Sweatlock, L.A., Lezec, H.J., Garcia de Abajo, F.J., Polman, A., Atwater, H.A., Nano Lett. 7, 3612 (2007).CrossRefGoogle Scholar
87.Kuttge, M., Vesseur, E.J.R., Koenderink, A.F., Lezec, H.J., Atwater, H.A., García de Abajo, F.J., Polman, A., Phys. Rev. B 79, 2 (2009).CrossRefGoogle Scholar
88.Vesseur, E.J.R., Polman, A., Nano Lett. 11, 5524 (2011).CrossRefGoogle Scholar
89.Frimmer, M., Coenen, T., Koenderink, A., Phys. Rev. Lett. 108, 1 (2012).CrossRefGoogle Scholar
90.Coenen, T., Vesseur, E.J.R., Polman, A., ACS Nano 6, 1742 (2012).CrossRefGoogle Scholar
91.Zhu, X.L., Ma, Y., Zhang, J.S., Xu, J., Wu, X.F., Zhang, Y., Han, X.B., Fu, Q., Liao, Z.M., Chen, L., Yu, D.P., Phys. Rev. Lett. 105, 1 (2010).Google Scholar
92.Reyes-Coronado, A., Barrera, R.G., Batson, P.E., Echenique, P.M., Rivacoba, A., Aizpurua, J., Phys. Rev. B 82, 235429 (2010).CrossRefGoogle Scholar
93.Batson, P.E., Reyes-Coronado, A., Barrera, R.G., Rivacoba, A., Echenique, P.M., Aizpurua, J., Nano Lett. 11, 3388 (2011).CrossRefGoogle Scholar
94.Altewischer, E., van Exter, M.P., Woerdman, J.P., Nature 418, 304 (2002).CrossRefGoogle Scholar
95.Moreno, E., García-Vidal, F., Erni, D., Cirac, J., Martín-Moreno, L., Phys. Rev. Lett. 92, 3 (2004).CrossRefGoogle Scholar
96.Fasel, S., Robin, F., Moreno, E., Erni, D., Gisin, N., Zbinden, H., Phys. Rev. Lett. 94, 1 (2005).Google Scholar
97.Zia, R., Brongersma, M.L., Nat. Nanotechnol. 2, 426 (2007).CrossRefGoogle Scholar
98.Kolesov, R., Grotz, B., Balasubramanian, G., Stoehr, R.J., Nicolet, A.A.L., Hemmer, P.R., Jelezko, F., Wrachtrup, J., Nat. Phys. 5, 470 (2009).CrossRefGoogle Scholar
99.Akimov, A.V., Mukherjee, A., Yu, C.L., Chang, D.E., Zibrov, A.S., Hemmer, P.R., Park, H., Lukin, M.D., Nature 450, 402 (2007).CrossRefGoogle Scholar
100.Chang, D.E., Sørensen, A.S., Demler, E.A., Lukin, M.D., Nat. Phys. 3, 807 (2007).CrossRefGoogle Scholar
101.Koppens, F.H.L., Chang, D.E., García de Abajo, F.J., Nano Lett. 11, 3370 (2011).CrossRefGoogle Scholar
102.Esteban, R., Borisov, A.G., Nordlander, P., Aizpurua, J., Nat. Commun. 3, 825 (2012).CrossRefGoogle Scholar
103.Cortes, C.L., Newman, W., Molesky, S., Jacob, Z., J. Opt. 14, 063001 (2012).CrossRefGoogle Scholar
104.Krishnamoorthy, H.N.S., Jacob, Z., Narimanov, E., Kretzschmar, I., Menon, V.M., Science 336, 205 (2012).CrossRefGoogle Scholar
105.Yablonovitch, E., 10th IEEE International Conference on Nanotechnology 13 (2010), doi:10.1109/NAN0.2010.5697734.CrossRefGoogle Scholar
106.Xiao, S., Drachev, V.P., Kildishev, A.V., Ni, X., Chettiar, U.K., Yuan, H.-K., Shalaev, V.M., Nature 466, 735 (2010).CrossRefGoogle Scholar
107.Khurgin, J.B., Sun, G., Appl. Phys. Lett. 96, 181102 (2010).CrossRefGoogle Scholar
108.Tassin, P., Koschny, T., Kafesaki, M., Soukoulis, C.M.A., Nat. Photonics 6, 259 (2012).CrossRefGoogle Scholar
109.Naik, G., Kim, J., Boltasseva, A., Opt. Mater. Express 1, 1090 (2011).CrossRefGoogle Scholar
110.Naik, G., Schroeder, J.L., Ni, X., Kildishev, A.V., Sands, T.D., Boltasseva, A., Opt. Mater. Express 2, 478 (2012).CrossRefGoogle Scholar
111.Manthiram, K., Alivisatos, A.P., J. Am. Chem. Soc. 134, 3995 (2012).CrossRefGoogle Scholar
112.Luther, J.M., Jain, P.K., Ewers, T., Alivisatos, A.P., Nat. Mater. 10, 361 (2011).CrossRefGoogle Scholar
113.Garcia, G., Buonsanti, R., Runnerstrom, E.L., Mendelsberg, R.J., Llordes, A., Anders, A., Richardson, T.J., Milliron, D.J., Nano Lett. 11, 4415 (2011).CrossRefGoogle Scholar
114.Fei, Z., Rodin, A.S., Andreev, G.O., Bao, W., McLeod, A.S., Wagner, M., Zhang, L.M., Zhao, Z., Thiemens, M., Dominguez, G., Fogler, M.M., Castro Neto, A.H., Lau, C.N., Keilmann, F., Basov, D.N.Nature (2012), doi:10.1038/nature11253Google Scholar
115.Economou, E.N., Phys. Rev. 182, 539 (1969).CrossRefGoogle Scholar
116.Kretschmann, E., Raether, H., Z. Naturforsch. A 23, 2135 (1968).CrossRefGoogle Scholar
117.Kreibig, U., Vollmer, M., Optical Properties of Metal Clusters (Springer, NY, 1995).Google Scholar
118.Nevet, A., Berkovitch, N., Hayat, A., Ginzburg, P., Ginzach, S., Sorias, O., Orenstein, M., Nano Lett. 10 (5), 1848 (2010).CrossRefGoogle Scholar
119.Chen, J., Badioli, M., Alonso-González, P., Thongrattanasiri, S., Huth, F., Osmond, J., Spasenović, M., Centeno, A., Pesquera, A., Godignon, P., Zurutuza Elorza, A., Camara, N., García de Abajo, F.J., Hillenbrand, R., Koppens, F.H.L., Nature (2012), doi:10.1038/nature11254.Google ScholarPubMed