Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-20T18:09:40.787Z Has data issue: false hasContentIssue false

Plasmonic metal–semiconductor heterostructures for hot-electron-driven photochemistry

Published online by Cambridge University Press:  10 January 2020

Jiawei Huang
Affiliation:
Department of Chemistry, University of Florida, USA; [email protected]
Wenxiao Guo
Affiliation:
Department of Chemistry, University of Florida, USA; [email protected]
Yue Hu
Affiliation:
Department of Chemistry, University of Florida, USA; [email protected]
Wei David Wei
Affiliation:
Department of Chemistry, University of Florida, USA; [email protected]
Get access

Abstract

Plasmonic nanostructures possess broadly tunable optical properties with catalytically active surfaces. They offer new opportunities for achieving efficient solar-to-chemical energy conversion. Plasmonic metal–semiconductor heterostructures have attracted heightened interest due to their capability of generating energetic hot electrons that can be collected to facilitate chemical reactions. In this article, we present a detailed survey of recent examples of plasmonic metal–semiconductor heterostructures for hot-electron-driven photochemistry, including plasmonic metal–oxide, plasmonic metal–two-dimensional materials, and plasmonic metal–metal–organic frameworks. We conclude with a discussion on the remaining challenges in the field and an outlook regarding future opportunities for designing high-performance plasmonic metal–semiconductor heterostructures for photochemistry.

Type
Materials for Hot-Carrier Chemistry
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Reference Solar Spectral Irradiance: Air Mass 1.5,” http://rredc.Nrel.Gov/solar/spectra/am1.5 (accessed October 23, 2017).Google Scholar
Zhang, Y., He, S., Guo, W., Hu, Y., Huang, J., Mulcahy, J.R., Wei, W.D., Chem. Rev. 118, 2927 (2018).CrossRefGoogle Scholar
Brongersma, M.L., Halas, N.J., Nordlander, P., Nat. Nanotechnol. 10, 25 (2015).CrossRefGoogle Scholar
Linic, S., Aslam, U., Boerigter, C., Morabito, M., Nat. Mater. 14, 567 (2015).CrossRefGoogle Scholar
Aslam, U., Rao, V.G., Chavez, S., Linic, S., Nat. Catal. 1, 656 (2018).CrossRefGoogle Scholar
Kale, M.J., Avanesian, T., Christopher, P., ACS Catal . 4, 116 (2014).CrossRefGoogle Scholar
Giannini, V., Fernández-Domínguez, A.I., Heck, S.C., Maier, S.A., Chem. Rev. 111, 3888 (2011).CrossRefGoogle Scholar
Willets, K.A., Van Duyne, R.P., Annu. Rev. Phys. Chem. 58, 267 (2007).CrossRefGoogle Scholar
Gieseking, R.L., Ratner, M.A., Schatz, G.C., ACS Symp. Ser. 1245 (1), 1 (2016).Google Scholar
Hammer, B., Norskov, J.K., Nature 376, 238 (1995).CrossRefGoogle Scholar
Duchene, J.S., Sweeny, B.C., Johnston-Peck, A.C., Su, D., Stach, E.A., Wei, W.D., Angew. Chem. Int. Ed. Engl. 53, 7887 (2014).CrossRefGoogle Scholar
Qian, K., Sweeny, B.C., Johnston-Peck, A.C., Niu, W., Graham, J.O., Duchene, J.S., Qiu, J., Wang, Y.C., Engelhard, M.H., Su, D., Stach, E.A., Wei, W.D., J. Am. Chem. Soc. 136, 9842 (2014).CrossRefGoogle Scholar
Yang, J., Guo, Y., Jiang, R., Qin, F., Zhang, H., Lu, W., Wang, J., Yu, J.C., J. Am. Chem. Soc. 140, 8497 (2018).CrossRefGoogle Scholar
Li, C., Wang, T., Zhao, Z.J., Yang, W., Li, J.F., Li, A., Yang, Z., Ozin, G.A., Gong, J., Angew. Chem. Int. Ed. Engl. 57, 5278 (2018).CrossRefGoogle Scholar
Priebe, J.B., Karnahl, M., Junge, H., Beller, M., Hollmann, D., Brückner, A., Angew. Chem. Int. Ed. Engl. 52, 11420 (2013).CrossRefGoogle Scholar
Hou, W., Hung, W.H., Pavaskar, P., Goeppert, A., Aykol, M., Cronin, S.B., ACS Catal . 1, 929 (2011).CrossRefGoogle Scholar
Collado, L., Reynal, A., Coronado, J.M., Serrano, D.P., Durrant, J.R., De la Peña O’Shea, V.A., Appl. Catal. B 178, 177 (2015).CrossRefGoogle Scholar
Tsukamoto, D., Shiraishi, Y., Sugano, Y., Ichikawa, S., Tanaka, S., Hirai, T., J. Am. Chem. Soc. 134, 6309 (2012).CrossRefGoogle Scholar
Tanaka, A., Nishino, Y., Sakaguchi, S., Yoshikawa, T., Imamura, K., Hashimoto, K., Kominami, H., Chem. Commun. 49, 2551 (2013).CrossRefGoogle Scholar
Zhang, Q., Jin, X., Xu, Z., Zhang, J., Rendón, U.F., Razzari, L., Chaker, M., Ma, D., J. Phys. Chem. Lett. 9, 5317 (2018).CrossRefGoogle Scholar
Patra, B.K., Guria, A.K., Dutta, A., Shit, A., Pradhan, N., Chem. Mater. 26, 7194 (2014).CrossRefGoogle Scholar
Liu, L., Ouyang, S., Ye, J., Angew. Chem. Int. Ed. Engl. 52, 6689 (2013).CrossRefGoogle Scholar
Cai, X., Zhu, M., Elbanna, O.A., Fujitsuka, M., Kim, S., Mao, L., Zhang, J., Majima, T., ACS Catal . 8, 122 (2018).CrossRefGoogle Scholar
Wu, B., Liu, D., Mubeen, S., Chuong, T.T., Moskovits, M., Stucky, G.D., J. Am. Chem. Soc. 138, 1114 (2016).CrossRefGoogle Scholar
Jia, H., Du, A., Zhang, H., Yang, J., Jiang, R., Wang, J., Zhang, C.Y., J. Am. Chem. Soc. 141, 5083 (2019).CrossRefGoogle Scholar
Jiang, W., Bai, S., Wang, L., Wang, X., Yang, L., Li, Y., Liu, D., Wang, X., Li, Z., Jiang, J., Xiong, Y., Small 12, 1640 (2016).CrossRefGoogle ScholarPubMed
Sousa-Castillo, A., Comesaña-Hermo, M., Rodríguez-González, B., Pérez-Lorenzo, M., Wang, Z., Kong, X.T., Govorov, A.O., Correa-Duarte, M.A., J. Phys. Chem. C 120, 11690 (2016).CrossRefGoogle Scholar
Robatjazi, H., Zhao, H., Swearer, D.F., Hogan, N.J., Zhou, L., Alabastri, A., McClain, M.J., Nordlander, P., Halas, N.J., Nat. Commun. 8, (2017).CrossRefGoogle Scholar
He, S., Huang, J., Goodsell, J.L., Angerhofer, A., Wei, W.D., Angew. Chem. Int. Ed. Engl. 58, 6038 (2019).CrossRefGoogle Scholar
Zou, J., Si, Z., Cao, Y., Ran, R., Wu, X., Weng, D., J. Phys. Chem. C 120, 29116 (2016).CrossRefGoogle Scholar
Liu, E., Qi, L., Bian, J., Chen, Y., Hu, X., Fan, J., Liu, H., Zhu, C., Wang, Q., Mater. Res. Bull. 68, 203 (2015).CrossRefGoogle Scholar
Hong, J.W., Wi, D.H., Lee, S.U., Han, S.W., J. Am. Chem. Soc. 138, 15766 (2016).CrossRefGoogle Scholar
Tanaka, A., Sakaguchi, S., Hashimoto, K., Kominami, H., ACS Catal . 3, 79 (2013).CrossRefGoogle Scholar
Bian, Z., Tachikawa, T., Zhang, P., Fujitsuka, M., Majima, T., J. Am. Chem. Soc. 136, 458 (2014).CrossRefGoogle Scholar
Mubeen, S., Lee, J., Singh, N., Krämer, S., Stucky, G.D., Moskovits, M., Nat. Nanotechnol. 8, 247 (2013).CrossRefGoogle Scholar
Zhang, P., Fujitsuka, M., Majima, T., Nanoscale 9, 1520 (2017).CrossRefGoogle ScholarPubMed
Shi, Y., Wang, J., Wang, C., Zhai, T.T., Bao, W.J., Xu, J.J., Xia, X.H., Chen, H.Y., J. Am. Chem. Soc. 137, 7365 (2015).CrossRefGoogle Scholar
Shang, B., Cui, X., Jiao, L., Qi, K., Wang, Y., Fan, J., Yue, Y., Wang, H., Bao, Q., Fan, X., Wei, S., Song, W., Cheng, Z., Guo, S., Zheng, W., Nano Lett . 19, 2758 (2019).CrossRefGoogle Scholar
Lou, Z., Fujitsuka, M., Majima, T., J. Phys. Chem. Lett. 8, 844 (2017).CrossRefGoogle Scholar
Zhang, L., Ding, N., Lou, L., Iwasaki, K., Wu, H., Luo, Y., Li, D., Nakata, K., Fujishima, A., Meng, Q., Adv. Funct. Mater. 29, 1 (2019).Google Scholar
Xue, J., Ma, S., Zhou, Y., Zhang, Z., He, M., ACS Appl. Mater. Interfaces 7, 9630 (2015).CrossRefGoogle Scholar
Jin, H., Guo, C., Liu, X., Liu, J., Vasileff, A., Jiao, Y., Zheng, Y., Qiao, S.Z., Chem. Rev. 118, 6337 (2018).CrossRefGoogle Scholar
Ong, W.J., Tan, L.L., Ng, Y.H., Yong, S.T., Chai, S.P., Chem. Rev. 116, 7159 (2016).CrossRefGoogle Scholar
Liu, C., Kong, D., Hsu, P.C., Yuan, H., Lee, H.W., Liu, Y., Wang, H., Wang, S., Yan, K., Lin, D., Maraccini, P.A., Parker, K.M., Boehm, A.B., Cui, Y., Nat. Nanotechnol. 11, 1098 (2016).CrossRefGoogle Scholar
Voiry, D., Fullon, R., Yang, J., de Carvalho Castro e Silva, C., Kappera, R., Bozkurt, I., Kaplan, D., Lagos, M.J., Batson, P.E., Gupta, G., Mohite, A.D., Dong, L., Er, D., Shenoy, V.B., Asefa, T., Chhowalla, M., Nat. Mater. 15, 1003 (2016).CrossRefGoogle Scholar
Zhang, J., Wu, J., Guo, H., Chen, W., Yuan, J., Martinez, U., Gupta, G., Mohite, A., Ajayan, P.M., Lou, J., Adv. Mater. 29, 1 (2017).Google Scholar
Khan, M.E., Khan, M.M., Cho, M.H., Nanoscale 10, 9427 (2018).CrossRefGoogle Scholar
Han, Q., Chen, N., Zhang, J., Qu, L., Mater. Horiz. 4, 832 (2017).CrossRefGoogle Scholar
Zhou, H.C., Long, J.R., Yaghi, O.M., Chem. Rev. 112, 673 (2012).CrossRefGoogle Scholar
Corma, A., Garcia, H., Llabrés i Xamena, F.X., Chem. Rev. 110, 4606 (2010).CrossRefGoogle Scholar
Zhu, L., Liu, X.Q., Jiang, H.L., Sun, L.B., Chem. Rev. 117, 8129 (2017).CrossRefGoogle Scholar
Xiao, J.D., Han, L., Luo, J., Yu, S.H., Jiang, H.L., Angew. Chem. Int. Ed. Engl. 57, 1103 (2018).CrossRefGoogle Scholar
Jiang, H.-L., Wang, S.-S., Jiao, L., Qian, Y., Hu, W.-C., Xu, G.-Y., Wang, C., Angew. Chem. Int. Ed. Engl. 58, 1 (2019).Google Scholar
Robatjazi, H., Weinberg, D., Swearer, D.F., Jacobson, C., Zhang, M., Tian, S., Zhou, L., Nordlander, P., Halas, N.J., Sci. Adv. 5, 5340 (2019).CrossRefGoogle Scholar
Huang, X., Li, H., Zhang, C., Tan, S., Chen, Z., Chen, L., Lu, Z., Wang, X., Xiao, M., Nat. Commun. 10, 1 (2019).Google Scholar
Furube, A., Du, L., Hara, K., Katoh, R., Tachiya, M., J. Am. Chem. Soc. 129, 14852 (2007).CrossRefGoogle Scholar
Manser, J.S., Christians, J.A., Kamat, P.V., Chem. Rev. 116, 12956 (2016).CrossRefGoogle Scholar
Boyd, C.C., Cheacharoen, R., Leijtens, T., McGehee, M.D., Chem. Rev. 119, 3418 (2019).CrossRefGoogle Scholar
Wang, S., Gao, Y., Miao, S., Liu, T., Mu, L., Li, R., Fan, F., Li, C., J. Am. Chem. Soc. 139, 11771 (2017).CrossRefGoogle Scholar
Duchene, J.S., Tagliabue, G., Welch, A.J., Cheng, W.H., Atwater, H.A., Nano Lett . 18, 2545 (2018).CrossRefGoogle Scholar
Hung, S.F., Xiao, F.X., Hsu, Y.Y., Suen, N.T., Bin Yang, H., Chen, H.M., Liu, B., Adv. Energy Mater. 6, 1 (2016).Google Scholar