Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-20T00:28:49.007Z Has data issue: false hasContentIssue false

Plasmonic excitation and manipulation with an electron beam

Published online by Cambridge University Press:  15 August 2012

Ernst Jan R. Vesseur
Affiliation:
Caelux Corporation, Pasadena, CA; [email protected]
Javier Aizpurua
Affiliation:
Center for Materials Physics of the Spanish National Council for Scientific Research CSIC and DIPC, San Sebastian, Spain; [email protected]
Toon Coenen
Affiliation:
FOM Institute AMOLF, Amsterdam, The Netherlands; [email protected]
Alejandro Reyes-Coronado
Affiliation:
Institute of Physics, Autonomous University of Puebla, Mexico; [email protected]
Philip E. Batson
Affiliation:
Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University; [email protected]
Albert Polman
Affiliation:
FOM Institute AMOLF, Amsterdam, The Netherlands; [email protected]
Get access

Abstract

When an electron beam passes through or near a metal structure, it will excite surface plasmons, providing a unique way to access surface plasmon behavior at the nanoscale. An electron beam focused to nanometer dimensions thus functions as a point source that is able to probe the local plasmonic mode structure at deep-subwavelength resolution. In this article, we show how well-controlled coupling between an electron beam and surface plasmons, combined with a far-field detection system, allows characterization and manipulation of plasmons on a variety of plasmonic devices. By mapping the spatial profile of inelastic scattering to resonant modes, the dispersion and losses of surface plasmons are resolved. The technique further allows probing of the confinement of plasmons within cavities and measuring the angular emission profile of nanoantennas. The coupling of electrons to surface plasmons allows the use of the electron beam as a dipole emitter that can be positioned at will. The beam position thereby can select between modes with different symmetries. This effect can be used to exert forces on plasmonic structures on the nanometer length scale with great control.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Pelton, M., Aizpurua, J., Bryant, G.W., Laser and Photonics Reviews 2, 136 (2008).CrossRefGoogle Scholar
2.Hillenbrand, R., Keilmann, F., Hanarp, P., Sutherland, D.S., Aizpurua, J., Appl. Phys. Lett. 83, 368 (2003).CrossRefGoogle Scholar
3.Burresi, M., Kampfrath, T., Oosten, D.v., Prangsma, J.C., Song, B.S., Noda, S., Kuipers, L., Phys. Rev. Lett. 105, 123901 (2010).CrossRefGoogle Scholar
4.Koenderink, F.A., Kafesaki, M., Buchler, B.C., Sandoghdar, V., Phys. Rev. Lett. 95, 153904 (2005).CrossRefGoogle Scholar
5.Powell, C.J., Swan, J.B., Phys. Rev. 115, 869 (1959).CrossRefGoogle Scholar
6.Teng, Y.Y., Stern, E.A., Phys. Rev. Lett. 19, 511 (1967).CrossRefGoogle Scholar
7.García de Abajo, F.J., Rev. Mod. Phys. 82, 209 (2010).CrossRefGoogle Scholar
8.Kuttge, M., Vesseur, E.J.R., Koenderink, A.F., Lezec, H.J., Atwater, H.A., García de Abajo, F.J., Polman, A., Phys. Rev. B 79, 113405 (2009).CrossRefGoogle Scholar
9.Coenen, T., Vesseur, E.J.R., Polman, A., Appl. Phys. Lett. 99, 143103 (2011).CrossRefGoogle Scholar
10.Kuttge, M., García de Abajo, F.J., Polman, A., Nano Lett. 10, 1537 (2009).CrossRefGoogle Scholar
11.Barnard, E.S., Coenen, T., Vesseur, E.J.R., Polman, A., Brongersma, M.L., Nano Lett. 11, 4265 (2011).CrossRefGoogle Scholar
12.Cai, W., Sainidou, R., Xu, J., Polman, A., García de Abajo, F.J., Nano Lett. 9, 1176 (2009).CrossRefGoogle Scholar
13.Ritchie, R.H., Phys. Rev. 106 (5), 874 (1957).CrossRefGoogle Scholar
14.Batson, P.E., Phys. Rev. Lett. 49, 936 (1982).CrossRefGoogle Scholar
15.Ferrell, T.L., Echenique, P.M., Phys. Rev. Lett. 55 (14), 1526 (1985).CrossRefGoogle Scholar
16.Bosman, M., Keast, V.J., Watanabe, M., Maaroof, A.I., Cortie, M.B., Nanotechnology 18, 165505 (2007).CrossRefGoogle Scholar
17.Nelayah, J., Kociak, M., Stéphan, O., García de Abajo, F.J., Tencé, M., Henrard, L., Taverna, D., Pastoriza-Santos, I., Liz-Marzán, L.M., Colliex, C., Nat. Phys. 3, 348 (2007).CrossRefGoogle Scholar
18.Scholl, J.A., Koh, A.L., Dionne, J.A., Nature 483, 421 (2012).CrossRefGoogle Scholar
19.Yurtsever, A., van der Veen, R.M., Zewail, A.H., Science 335, 59 (2012).CrossRefGoogle Scholar
20.Chu, M.-W., Myroshnychenko, V., Chen, C.H., Deng, J.-P., Mou, C.-Y., García de Abajo, F.J., Nano Lett. 9, 399 (2009).CrossRefGoogle Scholar
21.Kuttge, M., Vesseur, E.J.R., Verhoeven, J., Lezec, H.J., Atwater, H.A., Polman, A., Appl. Phys. Lett. 93, 113110 (2008).CrossRefGoogle Scholar
22.van Wijngaarden, J.T., Verhagen, E., Polman, A., Ross, C.E., Lezec, H.J., Atwater, H.A., Appl. Phys. Lett. 88 (22), 221111 (2006).CrossRefGoogle Scholar
23.Bashevoy, M.V., Jonsson, F., Krasavin, A.V., Zheludev, N.I., Nano Lett. 6 (6), 1113 (2006).CrossRefGoogle Scholar
24.Hofmann, C.E., Vesseur, E.J.R., Sweatlock, L.A., Lezec, H., García de Abajo, F.J., Polman, A., Atwater, H.A., Nano Lett. 7, 3612 (2007).CrossRefGoogle Scholar
25.Kuttge, M., Vesseur, E.J.R., Polman, A., Appl. Phys. Lett. 94, 183104 (2009).CrossRefGoogle Scholar
26.Zhu, X.L., Ma, Y., Zhang, J.S., Xu, J., Wu, X.F., Zhang, Y., Han, X.B., Fu, Q., Liao, Z.M., Chen, L., Yu, D.P., Phys. Rev. Lett. 105, 127402 (2010).CrossRefGoogle Scholar
27.Kuttge, M., Cai, W., García de Abajo, F.J., Polman, A., Phys. Rev. B 80, 033409 (2009).CrossRefGoogle Scholar
28.Ditlbacher, H., Hohenau, A., Wagner, D., Kreibig, U., Rogers, M., Hofer, F., Aussenegg, F.R., Krenn, J.R., Phys. Rev. Lett. 95, 257403 (2005).CrossRefGoogle Scholar
29.Miyazaki, H.T., Kurokawa, Y., Phys. Rev. Lett. 96, 097401 (2006).CrossRefGoogle Scholar
30.Novotny, L., van Hulst, N., Nat. Photonics 5, 83 (2011).CrossRefGoogle Scholar
31.Vesseur, E.J.R., de Waele, R., Kuttge, M., Polman, A., Nano Lett. 7, 2843 (2007).CrossRefGoogle Scholar
32.Vesseur, E.J.R., de Waele, R., Lezec, H.J., Atwater, H.A., García de Abajo, F.J., Appl. Phys. Lett. 92, 83110 (2008).CrossRefGoogle Scholar
33.Denisyuk, A.I., Adamo, G., MacDonald, K.F., Edgar, J., Arnold, M.D., Myroshnychenko, V., Ford, J., García de Abajo, F.J., Zheludev, N.I., Nano Lett. 10, 3250 (2010).CrossRefGoogle Scholar
34.Kuttge, M., PhD thesis, FOM Institute for Atomic and Molecular Physics, Amsterdam (2009).Google Scholar
35.Vesseur, E.J.R., Garcia de Abajo, F.J., Polman, A., Nano Lett. 9, 3147 (2009).CrossRefGoogle Scholar
36.Bozhevolnyi, S.I., Volkov, V.S., Devaux, E., Laluet, J.-Y., Ebbesen, W., Nature 440, 508 (2006).CrossRefGoogle Scholar
37.Vesseur, E.J.R., Polman, A., Nano Lett. 11, 5524 (2011).CrossRefGoogle Scholar
38.Coenen, T., Vesseur, E.J.R., Polman, A., Koenderink, A.F., Nano Lett. 11, 3779 (2011).CrossRefGoogle Scholar
39.Coenen, T., Vesseur, E.J.R., Polman, A., ACS Nano 6, 1742 (2012).CrossRefGoogle Scholar
40.Frimmer, M., Coenen, T., Koenderink, A.F., Phys. Rev. Lett. 108, 077404 (2012).CrossRefGoogle Scholar
41.Chaturvedi, P., Hsu, K.H., Kumar, A., Fung, K.H., Mabon, J.C., Fang, N.X., ACS Nano 3, 2965 (2009).CrossRefGoogle Scholar
42.Takeuchi, K., Yamamoto, N., Opt. Express 19, 12365 (2011).CrossRefGoogle Scholar
43.Reyes-Coronado, A., Barrera, R.G., Batson, P.E., Echenique, P.M., Rivacoba, A., Aizpurua, J., Phys. Rev. B 82, 235429 (2010).CrossRefGoogle Scholar
44.Prodan, E., Radloff, C., Halas, N.J., Nordlander, P.A., Science 302, 419 (2003).CrossRefGoogle Scholar
45.Xu, H., Bjerneld, E.J., Käll, M., Börjesson, L., Phys. Rev. Lett. 83, 4357 (1999).CrossRefGoogle Scholar
46.Xu, H., Aizpurua, J., Käll, M., Apell, P., Phys. Rev. E 62, 4318 (2000).CrossRefGoogle Scholar
47.Batson, P.E., Surf. Sci. 156, 720 (1985).CrossRefGoogle Scholar
48.Batson, P.E., Ultramicroscopy 9, 277 (1982).CrossRefGoogle Scholar
49.Yamamoto, N., Araya, K., García de Abajo, F.J., Phys. Rev. B 64, 205419 (2001).CrossRefGoogle Scholar
50.Yamamoto, N., Ohtani, S., García de Abajo, F.J., Nano Lett. 11, 91 (2011).CrossRefGoogle Scholar
51.Batson, P.E., Reyes-Coronado, A., Barrera, R.G., Rivacoba, A., Echenique, P.M., Aizpurua, J., Nano Lett. 11, 3388 (2011).CrossRefGoogle Scholar
52.Vesseur, E.J.R., PhD thesis, FOM Institute AMOLF, Utrecht University (2011).Google Scholar