Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T13:13:15.291Z Has data issue: false hasContentIssue false

Piezotronics and piezo-phototronics in two-dimensional materials

Published online by Cambridge University Press:  10 December 2018

Yudong Liu
Affiliation:
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, China; [email protected]
Erlin Tresna Nurlianti Wahyudin
Affiliation:
Department of Materials Science and Engineering, King Abdullah University of Science and Technology, Saudi Arabia; [email protected]
Jr-Hau He
Affiliation:
Department of Electrical Engineering, King Abdullah University of Science and Technology, Saudi Arabia; [email protected]
Junyi Zhai
Affiliation:
Micro-/Nanopiezoelectric Materials and Devices Group, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, China; [email protected]
Get access

Abstract

This article discusses recent studies of piezotronics and piezo-phototronics of two-dimensional (2D) materials. Two-dimensional semiconductor materials have demonstrated excellent electronic and optoelectronic properties, and these ultrathin materials are candidates for next-generation devices. Among 2D semiconductors, transition-metal dichalcogenides in particular have large in-place piezoelectricity due to the noncentrosymmetry along the armchair direction. A strong coupling of piezoelectric and semiconducting properties has been reported for Schottky contacts and pn junctions, even in single-layer materials. Since the carrier concentration of ultrathin 2D materials can be easily modulated by external piezocharges, layered composites of ferroelectric/2D materials also show promising piezotronic and piezo-phototronic properties.

Type
Piezotronics and Piezo-Phototronics
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wang, Z., Nanowires and Nanobelts: Materials, Properties and Devices. Volume 1: Metal and Semiconductor Nanowires (Springer, Berlin, 2013).Google Scholar
Wu, W., Wang, Z.L., Nat. Rev. Mater. 1, 16031 (2016).CrossRefGoogle Scholar
Blonsky, M.N., Zhuang, H.L., Singh, A.K., Hennig, R.G., ACS Nano 9, 9885 (2015).CrossRefGoogle Scholar
Wu, W., Wang, L., Li, Y., Zhang, F., Lin, L., Niu, S., Chenet, D., Zhang, X., Hao, Y., Heinz, T.F., Hone, J., Wang, Z.L., Nature 514, 470 (2014).CrossRefGoogle Scholar
Zhang, J., Meguid, S.A., Semicond. Sci. Technol. 32, 043006 (2017).CrossRefGoogle Scholar
Fei, R., Li, W., Li, J., Yang, L., Appl. Phys. Lett. 107, 173104 (2015).CrossRefGoogle Scholar
Zhu, H., Wang, Y., Xiao, J., Liu, M., Xiong, S., Wong, Z.J., Ye, Z., Ye, Y., Yin, X., Zhang, X., Nat. Nanotechnol. 10, 151 (2015).CrossRefGoogle Scholar
Bertolazzi, S., Brivio, J., Kis, A., ACS Nano 5, 9703 (2011).CrossRefGoogle Scholar
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A., Nat. Nanotechnol. 6, 147 (2011).CrossRefGoogle Scholar
Zhang, Y., Liu, Y., Wang, Z.L., Adv. Mater. 23, 3004 (2011).CrossRefGoogle Scholar
Qi, J., Lan, Y.W., Stieg, A.Z., Chen, J.H., Zhong, Y.L., Li, L.J., Chen, C.D., Zhang, Y., Wang, K.L., Nat. Commun. 6, 7430 (2015).CrossRefGoogle Scholar
Yin, Z., Li, H., Li, H., Jiang, L., Shi, Y., Sun, Y., Lu, G., Zhang, Q., Chen, X., Zhang, H., ACS Nano 6, 74 (2012).CrossRefGoogle Scholar
Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., Kis, A., Nat. Nanotechnol. 8, 497 (2013).CrossRefGoogle Scholar
Wu, W., Wang, L., Yu, R., Liu, Y., Wei, S.H., Hone, J., Wang, Z.L., Adv. Mater. 28, 8463 (2016).CrossRefGoogle Scholar
Zhang, K., Peng, M., Wu, W., Guo, J., Gao, G., Liu, Y., Kou, J., Wen, R., Lei, Y., Yu, A., Zhang, Y., Zhai, J., Wang, Z.L., Mater. Horiz. 4, 274 (2017).CrossRefGoogle Scholar
Zhang, K., Zhai, J., Wang, Z.L., 2D Mater. 5, 035038 (2018).CrossRefGoogle Scholar
Guo, J., Wen, R., Liu, Y., Zhang, K., Kou, J., Zhai, J., Wang, Z.L., ACS Appl. Mater. Interfaces 10, 8110 (2018).CrossRefGoogle Scholar
Lipatov, A., Sharma, P., Gruverman, A., Sinitskii, A., ACS Nano 9, 8089 (2015).CrossRefGoogle Scholar
Ko, C., Lee, Y., Chen, Y., Suh, J., Fu, D., Suslu, A., Lee, S., Clarkson, J.D., Choe, H.S., Tongay, S., Ramesh, R., Wu, J., Adv. Mater. 28, 2923 (2016).CrossRefGoogle Scholar
Zhang, Y., Jie, W., Chen, P., Liu, W., Hao, J., Adv. Mater. 30, 1707007 (2018).CrossRefGoogle Scholar
Liu, Y., Guo, J., Yu, A., Zhang, Y., Kou, J., Zhang, K., Wen, R., Zhang, Y., Zhai, J., Wang, Z.L., Adv. Mater. 30, 1704524 (2018).CrossRefGoogle Scholar
Xue, F., Zhang, J., Hu, W., Hsu, W.T., Han, A., Leung, S.F., Huang, J.K., Wan, Y., Liu, S., Zhang, J., He, J.H., Chang, W.H., Wang, Z.L., Zhang, X., Li, L.J., ACS Nano 12, 4976 (2018).CrossRefGoogle Scholar
Wang, Y., Qiu, G., Wang, R., Huang, S., Wang, Q., Liu, Y., Du, Y., Goddard, W.A., Kim, M.J., Xu, X., Ye, P.D., Wu, W., Nat. Electron. 1, 228 (2018).CrossRefGoogle Scholar