Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T14:07:50.073Z Has data issue: false hasContentIssue false

Piezotronic sensors

Published online by Cambridge University Press:  10 December 2018

Till Frömling
Affiliation:
Technische Universität Darmstadt, Germany; [email protected]
Roumeng Yu
Affiliation:
Amazon Lab126, USA; [email protected]
Mona Mintken
Affiliation:
Kiel University, Germany; [email protected]
Rainer Adelung
Affiliation:
Kiel University, Germany; [email protected]
Jürgen Rödel
Affiliation:
Technische Universität Darmstadt, Germany; [email protected]
Get access

Abstract

Piezotronics can not only afford control of electronic transport over potential barriers, but the attendant mechanical stress can also influence various physical properties of piezoelectric semiconductors. Stress significantly affects the optical properties of these materials as well as their response toward the chemical environment and magnetic fields. This article focuses on the utilization of piezotronics with regard to these physical parameters for sensor applications. Stress sensors, optical sensors (especially in the ultraviolet range), and sensors for chemicals in gas and liquid phases or magnetic fields via coupled magnetostrictive layers are discussed. The benefits of piezotronics for sensors are highlighted by discussing respective figures of merit.

Type
Piezotronics and Piezo-Phototronics
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wen, X., Wu, W., Pan, C., Hu, Y., Yang, Q., Wang, Z.L., Nano Energy 14, 276 (2015).CrossRefGoogle Scholar
Yu, R., Niu, S., Pan, C., Wang, Z.L., Nano Energy 14, 312 (2015).CrossRefGoogle Scholar
Zhou, J., Gu, Y., Fei, P., Mai, W., Gao, Y., Yang, R., Bao, G., Wang, Z.L., Nano Lett . 8, 3035 (2008).CrossRefGoogle Scholar
Zhao, X., Zhou, R., Hua, Q., Dong, L., Yu, R., Pan, C., J. Nanomater. (2015), http://dx.doi.org/10.1155/2015/854094.Google Scholar
Han, X., Chen, M., Pan, C., Wang, Z.L., J. Mater. Chem. C 4, 11341 (2016).CrossRefGoogle Scholar
Wu, W., Wen, X., Wang, Z.L., Science 340, 952 (2013).CrossRefGoogle Scholar
Zhang, W., Zhu, R., Nguyen, V., Yang, R., Sens. Actuators A Phys. 205, 164 (2014).CrossRefGoogle Scholar
Gröttrup, J., Kaps, S., Carstensen, J., Smazna, D., Mishra, Y.K., Piorra, A., Kirchhof, C., Quandt, E., Adelung, R., Phys. Status Solidi A 213, 2208 (2016).CrossRefGoogle Scholar
Hatch, S.M., Briscoe, J., Dunn, S., Adv. Mater. 25, 867 (2013).CrossRefGoogle Scholar
Han, Y., Gao, C., Zhu, H., Chen, S., Jiang, Q., Li, T., Willander, M., Cao, X., Wang, N., Nano Energy 13, 405 (2015).CrossRefGoogle Scholar
Pan, C., Yu, R., Niu, S., Zhu, G., Wang, Z.L., ACS Nano 7, 1803 (2013).CrossRefGoogle Scholar
Minjeong, H., Seongdong, L., Jonghwa, P., Doo-Seung, U., Youngoh, L., Hyunhyub, K., Adv. Funct. Mater. 25, 2841 (2015).Google Scholar
Zhang, Z., Liao, Q., Yan, X., Wang, Z.L., Wang, W., Sun, X., Lin, P., Huang, Y., Zhang, Y., Nano Res . 7, 190 (2014).CrossRefGoogle Scholar
Liu, C., Foundations of MEMS (Pearson Education, Chennai, India, 2006).Google Scholar
Barlian, A.A., Park, W.T., Mallon, J.R., Rastegar, A.J., Pruitt, B.L., Proc. IEEE 97, 513 (2009).CrossRefGoogle Scholar
Suzuki, K., Yataka, K., Okumiya, Y., Sakakibara, S., Sako, K., Mimura, H., Inoue, Y., ACS Sens . 1, 817 (2016).CrossRefGoogle Scholar
Amjadi, M., Pichitpajongkit, A., Lee, S., Ryu, S., Park, I., ACS Nano 8, 5154 (2014).CrossRefGoogle Scholar
Chen, S., Jiang, K., Lou, Z., Chen, D., Shen, G., Adv. Mater. Technol. 3, 1700248 (2017).CrossRefGoogle Scholar
Lin, L., Xie, Y., Wang, S., Wu, W., Niu, S., Wen, X., Wang, Z.L., ACS Nano 7, 8266 (2013).CrossRefGoogle Scholar
Li, X., Zhang, R., Yu, W., Wang, K., Wei, J., Wu, D., Cao, A., Li, Z., Cheng, Y., Zheng, Q., Ruoff, R.S., Zhu, H., Sci. Rep. 2, 870 (2012).CrossRefGoogle Scholar
Qin, Y., Yang, R., Wang, Z.L., J. Phys. Chem. C 112, 18734 (2008).CrossRefGoogle Scholar
Dukhyun, C., Min-Yeol, C., Mook, C.W., Hyeon-Jin, S., Hyun-Kyu, P., Ju-Seok, S., Jongbong, P., Seon-Mi, Y., Jin, C.S., Hee, L.Y., Sang-Woo, K., Jae-Young, C., Yoon, L.S., Min, K.J., Adv. Mater. 22, 2187 (2010).Google Scholar
Keil, P., Trapp, M., Novak, N., Frömling, T., Kleebe, H.-J., Rödel, J., Adv. Mater. 30, 1705573 (2018).CrossRefGoogle Scholar
Wang, L., Liu, S., Gao, G., Pang, Y., Yin, X., Feng, X., Zhu, L., Bai, Y., Chen, L., Xiao, T., Wang, X., Qin, Y., Wang, Z.L., ACS Nano 12, 4903 (2018).CrossRefGoogle Scholar
Wu, W., Wang, L., Li, Y., Zhang, F., Lin, L., Niu, S., Chenet, D., Zhang, X., Hao, Y., Heinz, T.F., Hone, J., Wang, Z.L., Nature 514, 470 (2014).CrossRefGoogle Scholar
Rogalski, A., Antoszewski, J., Faraone, L., J. Appl. Phys. 105, 091101 (2009).CrossRefGoogle Scholar
Konstantatos, G., Sargent, E.H., Nat. Nanotechnol. 5, 391 (2010).CrossRefGoogle Scholar
Han, X., Du, W., Yu, R., Pan, C., Wang, Z.L., Adv. Mater. 27, 7963 (2015).CrossRefGoogle Scholar
Zhou, J., Gu, Y., Hu, Y., Mai, W., Yeh, P.-H., Bao, G., Sood, A.K., Polla, D.L., Wang, Z.L., Appl. Phys. Lett. 94, 191103 (2009).CrossRefGoogle Scholar
Wang, Z., Yu, R., Wen, X., Liu, Y., Pan, C., Wu, W., Wang, Z.L., ACS Nano 8, 12866 (2014).CrossRefGoogle Scholar
Zhang, F., Ding, Y., Zhang, Y., Zhang, X., Wang, Z.L., ACS Nano 6, 9229 (2012).CrossRefGoogle Scholar
Rai, S.C., Wang, K., Ding, Y., Marmon, J.K., Bhatt, M., Zhang, Y., Zhou, W., Wang, Z.L., ACS Nano 9, 6419 (2015).CrossRefGoogle Scholar
Yu, X.-X., Yin, H., Li, H.-X., Zhang, W., Zhao, H., Li, C., Zhu, M.-Q., Nano Energy 34, 155 (2017).CrossRefGoogle Scholar
Humada, A.M., Hojabri, M., Mekhilef, S., Hamada, H.M., Renew. Sustain. Energy Rev . 56, 494 (2016).CrossRefGoogle Scholar
Bergveld, P., Sens. Actuators B Chem. 88, 1 (2003).CrossRefGoogle Scholar
Zhang, A., Lieber, C.M., Chem. Rev. 116, 215 (2016).CrossRefGoogle Scholar
Yu, R., Pan, C., Wang, Z.L., Energy Environ. Sci. 6, 494 (2013).CrossRefGoogle Scholar