Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T21:26:48.809Z Has data issue: false hasContentIssue false

Physics of Oxides for Future Devices

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Ferroelectric oxides underwent a renaissance in the 1980s and 1990s, driven by the success in commercializing thin-film ferroelectric random-access memory devices (FRAMs) for applications such as the SONY PlayStation 2 memory board. Materials scientists gravitated into this new field from magnetic oxides and from high-Tc superconductivity. But as the FRAM prospects wane and neither dynamic random-access memory devices nor FLASH memory has been replaced, we now require new directions for materials research on oxides. In this article, I outline briefly four new directions for ferroelectric oxide research: something old—ferroelectrically induced ferromagnetism and multiferroic switching; something new—THz emission from oxide ferroelectrics; something borrowed—Heisenberg-like switching of domains in nanoferroelectrics; and something blue—ZnO light-emitting devices. Magnetoelectricity—the linear coupling of polarization and magnetization—was theoretically predicted by Igor Dzyaloshinskii in 1957 and measured experimentally by Astrov two years later. It did not produce commercial devices. Although a flurry of new work occurred in the 1970s, emphasizing boracites—mostly by Hans Schmid in Geneva, no materials were found that exhibited large effects at room temperature. In the past decade, the search has been renewed, emphasizing rare earth systems such as Tb manganites.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Fox, D.L., Scott, J.F., J. Phys. C: Solid State Phys. 10, L329 (1977).CrossRefGoogle Scholar
2.Venturini, E.L., Morgenthaler, F.R., AIP Conf. Proc. 24, Graham, C.D. Jr, Lander, G.H., Rhyne, J.J., Eds. (AIP, New York, 1976) p. 168.CrossRefGoogle Scholar
3.Fox, D.L., Tilley, D.R., Scott, J.F., Guggenheim, H.J., Phys. Rev. B 21, 2926 (1980).CrossRefGoogle Scholar
4.Harris, A.B., Kenzelmann, M., Aharony, M., Entin-Wohlman, A.O., Phys. Rev. B 78, 014407 (2008).CrossRefGoogle Scholar
5.Perez-Mato, J.M., ESME Conference, Girona, Spain, 3 September 2008, in press.Google Scholar
6.Ederer, C., Spaldin, N.A., Phys. Rev. B 74, 020401 (2006).CrossRefGoogle Scholar
7.Blinc, R., Tavčar, G., Žemva, B., Hanžel, D., Cevc, P., Filipič, C., Levstik, A., Jagličić, Z., Trontelj, Z., Dalal, N., Ramachandran, V., Nellutla, S., Scott, J.F., J. Appl. Phys. 103, 074114 (2008).CrossRefGoogle Scholar
8.Ryzhii, V., J. Phys. Condens. Matter 20, 380301 (2008).CrossRefGoogle Scholar
9.Scott, J.F., Ferroelectric Memories (Springer, Heidelberg, 2000), p. 92.CrossRefGoogle Scholar
10.Morrison, F.D., Ramsay, L., Scott, J.F., J. Phys. Condens. Matter 15, L527 (2003).CrossRefGoogle Scholar
11.Fan, H.J., Kawasaki, S., Gregg, J.M., Langner, A., Leedham, T., Scott, J.F., Mater. Res. Soc. Proc. 1071, F01 (2008).CrossRefGoogle Scholar
12.Miyake, M., Scott, J.F., Lou, X.J., Morrison, F.D., Nonaka, T., Motoyama, S.T., Tsuji, O., J. Appl. Phys. 104, 064112 (2008).CrossRefGoogle Scholar
13.Takahashi, K., Kida, N., Tonouchi, M., Phys. Rev. Lett. 96, 11740 (2006).CrossRefGoogle Scholar
14.Tonouchi, M., Nat. Photonics 1, 97 (2007).CrossRefGoogle Scholar
15.Rana, D.S., Kawayama, I., Murakami, H., Tonouchi, M., Bull. Am. Phys. Soc. 53 (2008).Google Scholar
16.Scott, J.F., Fan, H.J., Kawasaki, S., Banys, J., Ivanov, M., Macutkevic, J., Blinc, R., Laguta, V.V., Cevc, P., Liu, J.S., Kholkin, A., Nano Lett. 8, 4404 (2008).CrossRefGoogle Scholar
17.Fan, H.J., Scott, J.F., British Patent Application 0817519.2 (2007).Google Scholar
18.Naumov, I., Fu, H., Phys. Rev. Lett. 98, 077603 (2007).CrossRefGoogle Scholar
19.Kagawa, F., Mochizuki, M., Onose, Y., Phys. Rev. Lett. 102, 057604 (2009).CrossRefGoogle Scholar
20.Wu, Z.Q., Huang, N., Liu, Z., Wu, J., Duan, W., Gu, B.L., J. Appl. Phys. 101, 014112 (2007).CrossRefGoogle Scholar
21.Aguado-Puente, P., Junquera, J., Phys. Rev. Lett. 100, 177601 (2008).CrossRefGoogle Scholar
22.Lahoche, L., Luk'yanchuk, I., Pascoli, G., Integr. Ferroelectr. 99, 60 (2008).CrossRefGoogle Scholar
23.Harrison, R.J., Dunin-Borkowski, R.E., Putnis, A., Proc. Nat. Acad. Sci. U.S.A. 99, 16556 (2002).CrossRefGoogle Scholar
24.Gruverman, A., Wu, D., Fan, H.J., Vrejou, I., Alexe, M., Harrison, R.J., Scott, J.F.J. Phys. Condens. Matter 20, 342201 (2008).CrossRefGoogle Scholar
25.Scheinfein, M.R., Unguris, J., Blue, J.L., Coakley, K.J., Pierce, D.T., Celotta, R.J., Ryan, P.J., Phys. Rev. B 43, 3395 (1991).CrossRefGoogle Scholar
26.Scott, J.F., Damen, T.C., Silfvast, W.T., Leite, R.C.C., Cheesman, L.E., Opt. Commun. 1, 397 (1970).CrossRefGoogle Scholar
27.Scott, J.F., Damen, T.C., Leite, R.C.C., Phys. Rev. 188, 1285 (1969).CrossRefGoogle Scholar
28.Scott, J.F., Phys. Rev. B 2, 1209 (1970).CrossRefGoogle Scholar
29.Martin, R.M., Phys. Rev. B 4, 3676 (1971).CrossRefGoogle Scholar
30.Shah, J., Leite, R.C.C., Scott, J.F., Solid State Commun. 8, 1089 (1970).CrossRefGoogle Scholar
31.Okuyama, M., Ishibashi, Y., Ferroelectric Thin Films (Springer, Berlin, 2005).Google Scholar
32.Fan, H.J., Werner, P., Zacharias, M., Small 2, 700 (2006).CrossRefGoogle Scholar
33.Hauschild, R., Lange, H., Priller, H., Klingshirn, C., Kling, R., Waag, A., Fan, H.J., Zacharias, M., Kalt, H., Phys. Status Solidi 243, 853 (2006).CrossRefGoogle Scholar
34.Fan, H.J., Scholz, R., Zacharias, M., Appl. Phys. Lett. 86, 023113 (2005).CrossRefGoogle Scholar
35.Keve, E.T., Abrahams, S.C., Bernstein, J.L., J. Chem. Phys. 53, 3279 (1970).CrossRefGoogle Scholar
36.Bechtle, D.W., Scott, J.F., Lockwood, D.J., Phys. Rev. B 18, 6213 (1978).CrossRefGoogle Scholar