Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T23:37:24.486Z Has data issue: false hasContentIssue false

Physical Principles of Ionic Polymer–Metal Composites as Electroactive Actuators and Sensors

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

This article introduces and considers the fundamental understanding of ionic polymer–metal composites (IPMCs) functioning as electroactive actuators and sensors. IPMCs consist of ion-exchange polymers acting as base materials and metal layers functioning as electrodes. The actuation and sensing abilities of IPMCs are dependent upon the components of ion-exchange polymers (ionic groups and cations) and electrode materials. In order to improve the bending and sensing performance of the IPMCs, an integral, two-step electroplating technique and a requisite dispersion agent are used during fabrication. Electroding materials also play a key role in determining the properties of IPMCs, and numerous methods in electroding have been tried, making use of various metals, carbon nanotubes, and composites. So far, IPMCs have been adapted as robotic actuators, artificial muscles, and electrical sensors. In the future, it is expected that IPMCs will broadly spread their roles from small-sized biomedical devices to large-scale actuators for aerospace as well as many industrial applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Oguro, K., Kawami, Y., Takenaka, H., J. Micromachine Soc. 5, 27 (1992).Google Scholar
2.Abe, Y., Mochizuki, A., Kawashima, T., Yamashita, S., Asaka, K., Oguro, K., Polym. Adv. Technol. 9, 520 (1998).Google Scholar
3.Asaka, K., Oguro, K., J. Electroanal. Chem. 480, 186 (2000).CrossRefGoogle Scholar
4.Shahinpoor, M., Kim, K.J., Proc. SPIE 3987, 110 (2000).CrossRefGoogle Scholar
5.Shahinpoor, M., Kim, K.J., Smart Mater. Struct. 10, 819 (2001).CrossRefGoogle Scholar
6.Sadeghpour, K., Salomon, R., Neogi, S., Smart Mater. Struct. 1, 172 (1992).CrossRefGoogle Scholar
7.Guo, S., Nakamura, T., Fukuda, T., Oguro, K., Proc. 7th Int. Symp. Micro Mach. Human Sci. (1996) p. 235.Google Scholar
8.Shahinpoor, M., Bar-Cohen, Y., Simpson, J.O., Smith, J., Smart Mater. Struct. 7, R15 (1998).Google Scholar
9.Dogruer, D., Tiwari, R., Kim, K.J., Proc. SPIE, 65241C (2007).Google Scholar
10.Costa, R.F.D., Ferreira, J.Z., Deslouis, C., J. Mem. Sci. 215, 115 (2003).CrossRefGoogle Scholar
11.Kim, K.J., Shahinpoor, M., Smart Mater. Struct. 12, 65 (2003).CrossRefGoogle Scholar
12.Raymond, L., Revol, J.-F., Ryan, D.H., Marchessault, R.H., J. Appl. Polym. Sci. 59, 1073 (1996).Google Scholar
13.Park, I.-S., Kim, K.J., Sens. Actuators A. Phys. 135, 220 (2007).CrossRefGoogle Scholar
14.Shahinpoor, M., Kim, K.J., Smart Mater. Struct. 9, 543 (2000).CrossRefGoogle Scholar
15.Nemat-Nasser, S., J. Appl. Phys. 92 (5), 2899 (2002).CrossRefGoogle Scholar
16.Bennett, M.D., Leo, D.J., Smart Mater. Struct. 12, 424 (2003).Google Scholar
17.Bennett, M.D., Leo, D.J., Sens. Actuators A, Phys. 115, 79 (2004).CrossRefGoogle Scholar
18.Park, I.-S., Kim, S.-M., Kim, K.J., Smart Mater. Struct. 16, 1090 (2007).CrossRefGoogle Scholar
19.Blake, N.P., Petersen, M.K., Voth, G.A., Metiu, H., J. Phys. Chem. B 109, 2422 (2005).Google Scholar
20.Nemat-Nasser, S., Zamani, S., J. Appl. Phys. 100, 064310 (2006).Google Scholar
21.Nemat-Nasser, S., Zamani, S., Tor, Y., J. Appl. Phys. 99, 104902 (2006).Google Scholar
22.Nemat-Nasser, S., Wu, Y., Smart Mater. Struct. 15, 909 (2006).Google Scholar
23.Nemat-Nasser, S., Wu, Y., J. Appl. Phys. 93, 5255 (2003).CrossRefGoogle Scholar
24.Kim, D., PhD thesis (University of Nevada, Reno, 2006).Google Scholar
25.Kim, D., Kim, K.J., Proc. SPIE, 65240A1 (2007).Google Scholar
26.Kim, D., Kim, K.J., Tak, Y., Pugal, D., Park, I.-S., Appl. Phys. Lett. 90, 184104 (2007).Google Scholar
27.Shahinpoor, M., Kim, K., Leo, D., Polym. Compos. 24, 24 (2003).Google Scholar
28.Jung, K., Nam, J., Choi, H., Sens. Actuators A, Phys. 107, 183 (2003).Google Scholar
29.Wang, J., Taya, M., Xu, C., Kuga, Y., Proc. SPIE, 65241K1 (2007).Google Scholar
30.Madden, J., Vandesteeg, N., Anquetil, P.A., Madden, P.G.A., Takshi, A., Pytel, R.Z., Lafontaine, S.R., Wieringa, P.A., Hunter, I., IEEE J. Oceanic Eng., 29, 706 (2004).Google Scholar