Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T13:49:50.122Z Has data issue: false hasContentIssue false

Photonic Crystals Made by Holographic Lithography

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

A photonic crystal is a periodically structured composite material, with a unit cell whose dimensions are of the order of an optical wavelength, made from constituents whose refractive indices differ greatly (Δn is of the order of 2). Three-dimensional (3D) photonic crystals typically consist of interpenetrating networks of dielectric material and air. Holographic lithography is a technology for the fabrication of photonic crystals in which the initial step is to define the 3D microstructure by interference of coherent light in a photosensitive precursor.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Campbell, M., Sharp, D.N., Harrison, M.T., Denning, R.G., and Turberfield, A.J., Nature 404 (2000) p.53.CrossRefGoogle Scholar
2.Yablonovitch, E., Phys. Rev. Lett. 58 (1987) p.2059.CrossRefGoogle Scholar
3.Yablonovitch, E., Gmitter, T.J., Meade, R.D., Rappe, A.M., Brommer, K.D., and Joannopoulos, J.D., Phys. Rev. Lett. 67 (1991) p.3380.CrossRefGoogle Scholar
4.Foresi, J.S., Villeneuve, P.R., Ferrara, J., Thoen, E.R., Steinmeyer, G., Fan, S., Joannopoulos, J.D., Kimmerling, L.C., Smith, H.I., and Ippen, E.P., Nature 390 (1997) p.143.CrossRefGoogle Scholar
5.Lin, S.-Y., Chow, E., Hietala, V., Villeneuve, P.R., and Joannopoulos, J.D., Science 282 (1998) p.274.CrossRefGoogle Scholar
6.Mekis, A., Chen, J.C., Kurland, I., Fan, S., Villeneuve, P.R., and Joannopoulos, J.D., Phys. Rev. Lett. 77 (1996) p.3787.CrossRefGoogle Scholar
7.Krauss, T.F. and Rue, R. De La, Prog. Quantum Electron. 23 (1999) p.51.CrossRefGoogle Scholar
8.Kitson, S.C., Barnes, W.L., and Sambles, J.R., IEEE Photon. Technol. Lett. 8 (1996) p.1662.CrossRefGoogle Scholar
9.Berger, V., Gauthier-Lafaye, O., and Costard, E., J.Appl. Phys. 82 (1997) p.60.CrossRefGoogle Scholar
10.Kapitonov, A.M., Gaponenko, N.V., Bogomolov, V.N., Prokofiev, A.V., Samoilovich, S.M., and Gaponenko, S.V., Phys. Status Solidi A 165 (1998) p.119.3.0.CO;2-Y>CrossRefGoogle Scholar
11.Holland, B.T., Blanford, C.F., and Stein, A., Science 281 (1998) p.538.CrossRefGoogle Scholar
12.Wijnhoven, J.E.G.J. and Vos, W.L., Science 281 (1998) p.802.CrossRefGoogle Scholar
13.Noda, S., Yamamoto, N., and Sasaki, A., Jpn. J.Appl. Phys., Part 2: Lett. 35 (1996) p.L909.CrossRefGoogle Scholar
14.Fleming, J.G. and Lin, S.-Y., Opt. Lett. 24 (1999) p.49.CrossRefGoogle Scholar
15.Wanke, M.C., Lehmann, O., Müller, K., Wen, Q.Z., and Stuke, M., Science 275 (1997) p. 1284.CrossRefGoogle Scholar
16.Cumpston, B.H., Ananthavel, S.P., Barlow, S., Dyer, D.L., Ehrlich, J.E., Erskine, L.L., Heikal, A.A., Kuebler, S.M., Lee, I.-Y.S., McCord-Maughon, D., Qin, J.Q., Röckel, H., Rumi, M., Wu, X.-L., Marder, S.R., and Perry, J.W., Nature 398 (1999) p. 51.CrossRefGoogle Scholar
17.Sun, H.-B., Matsuo, S., and Misawa, H., Appl. Phys. Lett. 74 (1999) p.786.CrossRefGoogle Scholar
18.Grynberg, G., Lounis, B., Verkerk, P., Courtois, J.-Y., and Salomon, C., Phys. Rev. Lett. 70 (1993) p.2249.CrossRefGoogle Scholar
19.Hemmerich, A., Zimmermann, C., and Hänsch, T.W., Europhys. Lett. 22 (1994) p.89.CrossRefGoogle Scholar
20.Jakšć, Z. and Djinović, Z., in Proc. XLI Yugoslav Conf. ETRAN, Vol. 4, Vrnjaćka Banja, Serbia (1998) p. 27.Google Scholar
21.Shoji, S. and Kawata, S., Appl. Phys. Lett. 76 (2000) p.2668.CrossRefGoogle Scholar
22.Sharp, D.N., Campbell, M., Dedman, E.R., Harrison, M.T., Denning, R.G., and Turberfield, A.J., “Photonic Crystals for the Visible Spectrum by Holographic Lithography,” Opt. Quantum Electron. in press.Google Scholar
23.Petsas, K.I., Coates, A.B., and Grynberg, G., Phys. Rev. A 50 (1994) p.5173.CrossRefGoogle Scholar
24.Lee, K.Y., LaBianca, N., Rishton, S.A., Zolgharnain, S., Gelorme, J.D., Shaw, J., and Chang, T.H.P., J. Vac. Sci. Technol., B 13 (1995) p. 3012.CrossRefGoogle Scholar
25.Lorenz, H., Despont, M., Fahrni, N., LaBianca, N., Renaud, P., and Vettiger, P., J. Micro-mech. Microeng. 7 (1997) p. 121; H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, Sens. Actuators, A, Phys. 64 (1998) p.33.CrossRefGoogle Scholar
26.Chan, C.T., Datta, S., Ho, K.M., and Soukoulis, C.M., Phys. Rev. B 50 (1994) p.1988.CrossRefGoogle Scholar
27.Sharp, D.N., Denning, R.G., Campbell, M., and Turberfield, A.J. (unpublished manuscript).Google Scholar
28.Yablonovitch, E., Gmitter, T.J., and Leung, K.M., Phys. Rev. Lett. 67 (1991) p.2295.CrossRefGoogle Scholar
29.Chelnokov, A., Rowson, S., Lourtioz, J.-M., Berger, V., and Courtois, J.-Y., J.Opt. A 1 (1999) p.L3.Google Scholar