Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T20:42:16.217Z Has data issue: false hasContentIssue false

Phonon engineering in graphene and van der Waals materials

Published online by Cambridge University Press:  10 September 2014

Alexander A. Balandin*
Affiliation:
University of California–Riverside, USA; [email protected]
Get access

Abstract

Phonons—quanta of crystal lattice vibrations—reveal themselves in electrical, thermal, optical, and mechanical phenomena in materials. Phonons carry heat, scatter electrons, and affect light–matter interactions. Nanostructures opened opportunities for tuning the phonon spectrum and related properties of materials for specific applications, thus realizing what was termed phonon engineering. Recent progress in graphene and two-dimensional van der Waals materials has led to a better understanding of phonon physics and created additional opportunities for controlling phonon interactions and phonon transport at room temperature. This article reviews the basics of phonon confinement effects in nanostructures, describes phonon thermal transport in graphene, discusses phonon properties of van der Waals materials, and outlines practical applications of low-dimensional materials that rely on phonon properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ziman, J.M., Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, New York, 2001).Google Scholar
Klemens, P.G., Solid State Phys. 7, 1 (1958).Google Scholar
Balandin, A., Wang, K.L., J. Appl. Phys. 84, 6149 (1998).Google Scholar
Balandin, A., Wang, K.L., Phys. Rev. B: Condens. Matter 58, 1544 (1998).Google Scholar
Balandin, A.A., J. Nanosci. Nanotechnol. 5, 1015 (2005).Google Scholar
Balandin, A.A., Pokatilov, E.P., Nika, D.L., J. Nanoelectron. Optoelectron. 2, 140 (2007).Google Scholar
Klitsner, T., Pohl, R.O., Phys. Rev. B: Condens. Matter 36, 6551 (1987).Google Scholar
Pokatilov, E.P., Nika, D.L., Balandin, A.A., Appl. Phys. Lett. 85, 825 (2004).Google Scholar
Pokatilov, E.P., Nika, D.L., Balandin, A.A., Phys. Rev. B: Condens. Matter 72, 113311 (2005).Google Scholar
Pokatilov, E.P., Nika, D.L., Balandin, A.A., Superlattices Microstruct. 38, 168 (2005).Google Scholar
Pokatilov, E.P., Nika, D.L., Balandin, A.A., Superlattices Microstruct. 33, 155 (2003).Google Scholar
Benisty, H., Sotomayor-Torres, C.M., Weisbuch, C., Phys. Rev. B: Condens. Matter 44, 10945 (1991).Google Scholar
Klimin, S.N., Pokatilov, E.P., Fomin, V.M., Phys. Status Solidi B 190, 441 (1995).Google Scholar
Pokatilov, E.P., Nika, D.L., Fomin, V.M., Devereese, J.T., Phys. Rev. B: Condens. Matter 77, 125328 (2008).Google Scholar
Rytov, S.M., Akust, Zh., Sov. Phys. Acoust. 2, 67 (1956).Google Scholar
Colvard, C., Gant, T.A., Klein, M.V., Merlin, R., Fischer, R., Morkoc, H., Gossard, A.C., Phys. Rev. B: Condens. Matter 31, 2080 (1985).Google Scholar
Bannov, N., Mitin, V., Stroscio, M., Phys. Status Solidi B 183, 131 (1994).Google Scholar
Nishiguchi, N., Ando, Y., Wybourne, M.N., J. Phys. Condens. Matter 9, 5751 (1997).Google Scholar
Svizhenko, A., Balandin, A., Bandyopadhyay, S., Stroscio, M.A., Phys. Rev. B: Condens. Matter 57, 4687 (1998).Google Scholar
Veliadis, J.V.D., Khurgin, J.B., Ding, Y.J., IEEE J. Quantum Electron. 32, 1155 (1996).Google Scholar
Zou, J., Balandin, A., J. Appl. Phys. 89, 2932 (2001).Google Scholar
Balandin, A.A., Phys. Low Dimen. Struct. 5/6, 73 (2000).Google Scholar
Fonoberov, V.A., Balandin, A.A., Nano Lett. 6, 2442 (2006).Google Scholar
Nika, D.L., Pokatilov, E.P., Balandin, A.A., Appl. Phys. Lett. 93, 173111 (2008).Google Scholar
Zincenco, N.D., Nika, D.L., Pokatilov, E.P., Balandin, A.A., J. Phys. Conf. Ser. 92, 012086 (2007).Google Scholar
Nika, D.L., Zincenko, N.D., Pokatilov, E.P., J. Nanoelectron. Optoelectron. 4, 180 (2009).Google Scholar
Lazarenkova, O.L., Balandin, A.A., Phys. Rev. B: Condens. Matter 66, 245319 (2002).Google Scholar
Balandin, A.A., Lazarenkova, O.L., Appl. Phys. Lett. 82, 415 (2003).Google Scholar
Nika, D.L., Pokatilov, E.P., Phys. Rev. B: Condens. Matter 84, 165415 (2011).Google Scholar
Pokatilov, E.P., Nika, D.L., Balandin, A.A., Appl. Phys. Lett. 89, 113508 (2006).Google Scholar
Pokatilov, E.P., Nika, D.L., Balandin, A.A., Appl. Phys. Lett. 89, 112110 (2006).Google Scholar
Hu, M., Giapis, K.P., Goicochea, J.V., Zhang, X., Poulikakos, D., Nano Lett. 11, 618 (2011).Google Scholar
Wingert, M.C., Chen, Z.C.Y., Dechaumphai, E., Moon, J., Kim, J.-H., Xiang, J., Chen, R., Nano Lett. 11, 5507 (2011).Google Scholar
Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N., Nano Lett. 8, 902 (2008).Google Scholar
Balandin, A.A., Nat. Mater. 10, 569 (2011).Google Scholar
Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E.P., Nika, D.L., Balandin, A.A., Bao, W., Miao, F., Lau, C.N., Appl. Phys. Lett. 92, 151911 (2008).Google Scholar
Nika, D.L., Pokatilov, E.P., Askerov, A.S., Balandin, A.A., Phys. Rev. B: Condens. Matter 79, 155413 (2009).Google Scholar
Nika, D.L., Ghosh, S., Pokatilov, E.P., Balandin, A.A., Appl. Phys. Lett. 94, 203103 (2009).Google Scholar
Lindsay, L., Broido, D.A., Mingo, N., Phys. Rev. B: Condens. Matter 82, 115427 (2010).Google Scholar
Klemens, P.G., J. Wide Bandgap Mater. 7, 332 (2000).Google Scholar
Klemens, P.G., Int. J. Thermophys. 22, 265 (2001).Google Scholar
Ghosh, S., Bao, W., Nika, D.L., Subrina, S., Pokatilov, E.P., Lau, C.N., Balandin, A.A., Nat. Mater. 9, 555 (2010).Google Scholar
Nika, D.L., Askerov, A.S., Balandin, A.A., Nano Lett. 12, 3238 (2012).Google Scholar
Nika, D.L., Balandin, A.A., J. Phys. Condens. Matter 24, 233203 (2012).Google Scholar
Berber, S., Kwon, Y.-K., Tománek, D., Phys. Rev. Lett. 84, 4613 (2000).Google Scholar
Cai, W., Moore, A.L., Zhu, Y., Li, X., Chen, S., Shi, L., Ruoff, R.S., Nano Lett. 10, 1645 (2010).Google Scholar
Jaureguia, L.A., Yueb, Y., Sidorovc, A.N., Hud, J., Yue, Q., Lopezf, G., Jalilianf, R., Benjaming, D.K., Delkdg, D.A., Wuh, W., Liuh, Z., Wangi, X., Jiangj, Z., Ruank, X., Baol, J., Peil, S.S., Chenm, Y.P., ECS Trans. 28, 73 (2010).Google Scholar
Chen, S., Wu, Q., Mishra, C., Kang, J., Zhang, H., Cho, K., Cai, W., Balandin, A.A., Ruoff, R.S., Nat. Mater. 11, 203 (2012).Google Scholar
Seol, J.H., Jo, I., Moore, A.L., Lindsay, L., Aitken, Z.H., Pettes, M.T., Li, X., Yao, Z., Huang, R., Broido, D., Mingo, N., Ruoff, R.S., Shi, L., Science 328, 213 (2010).Google Scholar
Blake, P., Hill, E.W., Castro Neto, A.H., Novoselov, K.S., Jiang, D., Yang, R., Booth, T.J., Geim, A.K., Appl. Phys. Lett. 91, 063124 (2007).Google Scholar
Li, X., Magnuson, C.W., Venugopal, A., Tromp, R.M., Hannon, J.B., Vogel, E.M., Colombo, L., Ruoff, R.S., J. Am. Chem. Soc. 133, 2816 (2011).Google Scholar
Li, X., Cai, W., Colombo, L., Ruoff, R.S., Nano Lett. 9, 4268 (2009).Google Scholar
Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K., Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).Google Scholar
Novoselov, K.S., McCann, E., Morozov, S.V., Fal’ko, V.I., Katsnelson, M.I., Zeitler, U., Jiang, D., Schedin, F., Geim, A.K., Nat. Phys. 2, 177 (2006).Google Scholar
Geim, A.K., Grigorieva, I.V., Nature 499, 419 (2013).Google Scholar
Teweldebrhan, D., Goyal, V., Balandin, A.A., Nano Lett. 10, 1209 (2010).Google Scholar
Mas-Balleste, R., Gomez-Navarro, C., Gomez-Herrero, J., Zamora, F., Nanoscale 3, 20 (2011).Google Scholar
Koski, K.J., Cui, Y., ACS Nano 7, 3739 (2013).Google Scholar
Xu, M., Liang, T., Shi, M., Chen, H., Chem. Rev. 113, 3766 (2013).Google Scholar
Teweldebrhan, D., Goyal, V., Rahman, M., Balandin, A.A., Appl. Phys. Lett. 96, 053107 (2010).Google Scholar
Shahil, K.M.F., Hossain, M.Z., Teweldebrhan, D., Balandin, A.A., Appl. Phys. Lett. 96, 153103 (2010).Google Scholar
Goyal, V., Teweldebrhan, D., Balandin, A.A., Appl. Phys. Lett. 97, 133117 (2010).Google Scholar
Richter, W., Kohler, H., Becker, C.R., Phys. Status Solidi B 84, 619 (1977).Google Scholar
Wagner, V., Dolling, G., Powell, B.M., Landwehr, G., Phys. Status Solidi B 85, 311 (1978).Google Scholar
Chhowalla, M., Shin, H.S., Eda, G., Li, L.-J., Loh, K.P., Zhang, H., Nat. Chem. 5, 263 (2013).Google Scholar
Gruner, G., Rev. Mod. Phys. 60, 1129 (1988).Google Scholar
Goli, P., Khan, J., Wickramaratne, D., Lake, R.K., Balandin, A.A., Nano Lett. 12, 5941 (2012).Google Scholar
Yang, Z., Jiang, C., Pope, T., Tsang, C., Stickney, J.L., Goli, P., Renteria, J., Salguero, T., Balandin, A.A., J. Appl. Phys. 114, 204301 (2013).Google Scholar
Mihailovic, D., Dvorsek, D., Kabanov, V.V., Demsar, J., Forro, L., Berger, H., Appl. Phys. Lett. 80, 871 (2002).Google Scholar
Ogawa, N., Miyano, K., Appl. Phys. Lett. 80, 3225 (2002).Google Scholar
Renteria, J., Samnakay, R., Jiang, C., Pope, T.R., Goli, P., Yan, Z., Wickramaratne, D., Salguero, T.T., Khitun, A.G., Lake, R.K., Balandin, A.A., J. Appl. Phys. 115, 034305 (2014).Google Scholar
Shahil, K.M.F., Balandin, A.A., Nano Lett. 12, 861 (2012).Google Scholar
Goyal, V., Balandin, A.A., Appl. Phys. Lett. 100, 073113 (2012).Google Scholar
Yan, Z., Liu, G., Khan, J.M., Balandin, A.A., Nat. Commun. 3, 827 (2012).Google Scholar
Shahil, K.M.F., Balandin, A.A., Solid State Commun. 152, 1331 (2012).Google Scholar
Goli, P., Legedza, S., Dhar, A., Salgado, R., Renteria, J., Balandin, A.A., J. Power Sources 248, 37 (2014).Google Scholar
Goli, P., Ning, H., Li, X., Lu, C.Y., Novoselov, K.S., Balandin, A.A., Nano Lett. 1, 1 (2014).Google Scholar
Cocemasov, A.I., Nika, D.L., Balandin, A.A., Phys. Rev. B: Condens. Matter 88, 035428 (2013).Google Scholar
Lopes dos Santos, J.M.B., Peres, N.M.R., Castro Neto, A.H., Phys. Rev. Lett. 99, 256802 (2007).Google Scholar
Gupta, A.K., Tang, Y., Crespi, V.H., Eklund, P.C., Phys. Rev. B: Condens. Matter 82, 241406 (R) (2010).Google Scholar
Righi, A., Costa, S.D., Chacham, H., Fantini, C., Venezuela, P., Magnuson, C., Colombo, L., Basca, W.S., Ruoff, R.S., Pimenta, M.A., Phys. Rev. B: Condens. Matter 84, 241409 (R) (2011).Google Scholar
Carozo, V., Almeida, C.M., Ferreira, E.H.M., Cancado, L.G., Achete, C.A., Jorio, A., Nano Lett. 11, 4527 (2011).Google Scholar
Lu, C.-C., Lin, Y.-C., Liu, Z., Yeh, C.-H., Suenaga, K., Chiu, P.-W., ACS Nano 7, 2587 (2013).Google Scholar
Campos-Delgado, J., Cancado, L.C., Achete, C.A., Jorio, A., Raskin, J.-P., Nano Res. 6, 269 (2013).Google Scholar
Wang, Y., Su, Z., Wu, W., Nie, S., Xie, N., Gong, H., Guo, Y., Lee, J.H., Xing, S., Lu, X., Wang, H., Lu, X., McCarty, K., Pei, S.-S., Robles-Hernandez, F., Hadjiev, V.G., Bao, J., Appl. Phys. Lett. 103, 123101 (2013).Google Scholar