Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-20T18:09:55.079Z Has data issue: false hasContentIssue false

Phase-change materials: Empowered by an unconventional bonding mechanism

Published online by Cambridge University Press:  05 September 2019

J. Pries
Affiliation:
Institute of Physics IA, RWTH Aachen University, Germany; [email protected]
O. Cojocaru-Mirédin
Affiliation:
Institute of Physics IA, RWTH Aachen University, Germany; [email protected]
M. Wuttig
Affiliation:
Institute of Physics IA, RWTH Aachen University; and JARA-Institute, Energy-Efficient Information Technology (Green IT), Germany; [email protected]
Get access

Abstract

Phase-change materials (PCMs) have demonstrated a wide range of potential applications ranging from electronic memories to photonic devices. These applications are enabled by the unconventional portfolio of properties that characterizes crystalline PCMs. Here, we address the origin of these unusual properties and how they are related to the application potential of these materials. Evidence will be presented that the properties are related to an unconventional bonding mechanism. Employing a novel map, which separates solids according to the number of electrons transferred and shared between adjacent atoms, it is shown that PCMs occupy a well-defined region. Depicting physical properties such as the optical dielectric constant as the third dimension in the map reveals systematic property trends. Such trends can be utilized to unravel the origins of the unconventional materials properties or alternatively, as a means to optimize them.

Type
Phase-Change Materials in Electronics and Photonics
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lencer, D., Salinga, M., Grabowski, B., Hickel, T., Neugebauer, J., Wuttig, M., Nat. Mater. 7, 972 (2008).CrossRefGoogle Scholar
Wuttig, M., Yamada, N., Nat. Mater. 6, 824 (2007).CrossRefGoogle Scholar
Raoux, S., Wełnic, W., Ielmini, D., Chem. Rev. 110, 240 (2009).CrossRefGoogle Scholar
Raty, J.Y., Schumacher, M., Golub, P., Deringer, V.L., Gatti, C., Wuttig, M., Adv. Mater. 31, 1806280 (2019).CrossRefGoogle Scholar
Wuttig, M., Deringer, V.L., Gonze, X., Bichara, C., Raty, J.Y., Adv. Mater. 30, 1803777 (2018).CrossRefGoogle Scholar
Makino, K., Tominaga, J., Hase, M., Opt. Express 19, 1260 (2011).CrossRefGoogle Scholar
Wełnic, W., Wuttig, M., Mater. Today 11, 20 (2008).CrossRefGoogle Scholar
Kolobov, A.V., Fons, P., Tominaga, J., Sci. Rep. 5, 13698 (2015).CrossRefGoogle Scholar
Loke, D., Lee, T.H., Wang, W.J., Shi, L.P., Zhao, R., Yeo, Y.C., Chong, T.C., Elliott, S.R., Science 336, 1566 (2012).CrossRefGoogle Scholar
Rao, F., Ding, K., Zhou, Y., Zheng, Y., Xia, M., Lv, S., Song, Z., Feng, S., Ronneberger, I., Mazzarello, R., Zhang, W., Ma, E., Science 358, 1423 (2017).CrossRefGoogle Scholar
Bruns, G., Merkelbach, P., Schlockermann, C., Salinga, M., Wuttig, M., Happ, T.D., Philipp, J.B., Kund, M., Appl. Phys. Lett. 95, 043108 (2009).CrossRefGoogle Scholar
Kolobov, A.V., Fons, P., Frenkel, A.I., Ankudinov, A.L., Tominaga, J., Uruga, T., Nat. Mater. 3, 703 (2004).CrossRefGoogle Scholar
Huang, B., Robertson, J., Phys. Rev. B 81, 081204 (2010).CrossRefGoogle Scholar
Zhu, M., Cojocaru-Mirédin, O., Mio, A.M., Keutgen, J., Küpers, M., Yu, Y., Cho, J.-Y., Dronskowski, R., Wuttig, M., Adv. Mater. 30, 1706735 (2018).CrossRefGoogle Scholar
Cojocaru-Mirédin, O., Hollermann, H., Mio, A.M., Wang, A.Y., Wuttig, M., J. Phys. Condens. Matter 31, 204002 (2019).CrossRefGoogle Scholar
Shen, J., Lv, S., Chen, X., Li, T., Zhang, S., Song, Z., Zhu, M., ACS Appl. Mater. Interfaces 11, 5336 (2019).CrossRefGoogle Scholar
De Geuser, F., Gault, B., Bostel, A., Vurpillot, F., Surf. Sci. 601, 536 (2007).CrossRefGoogle Scholar
Saxey, D.W., Ultramicroscopy 111, 473 (2011).CrossRefGoogle Scholar
Gault, B., Saxey, D.W., Ashton, M.W., Sinnott, S.B., Chiaramonti, A.N., Moody, M.P., Schreiber, D.K., New J. Phys. 18, 033031 (2016).CrossRefGoogle Scholar
Tang, F., Gault, B., Ringer, S.P., Cairney, J.M., Ultramicroscopy 110, 836 (2010).CrossRefGoogle Scholar
Thuvander, M., Kvist, A., Johnson, L.J., Weidow, J., Andrén, H.O., Ultramicroscopy 132, 81 (2013).CrossRefGoogle Scholar
Gatti, C., Z. Kristallogr. 220, 399 (2005).Google Scholar
Turnbull, D., Contemp. Phys. 10, 473 (1969).CrossRefGoogle Scholar
Gulbiten, O., Mauro, J.C., Guo, X., Boratav, O.N., J. Am. Ceram. Soc. 101 , 5 (2018).CrossRefGoogle Scholar
Martinez, L.M., Angell, C.A., Nature 410, 663 (2001).CrossRefGoogle Scholar
Wei, S., Lucas, P., Angell, C.A., MRS Bull . 44 (9), 691 (2019).CrossRefGoogle Scholar
Sebastian, A., Le Gallo, M., Krebs, D., Nat. Commun. 5, 4314 (2014).CrossRefGoogle Scholar
Orava, J., Greer, A.L., Gholipour, B., Hewak, D.W., Smith, C.E., Nat. Mater. 11, 279 (2012).CrossRefGoogle Scholar
Salinga, M., Carria, E., Kaldenbach, A., Bornhofft, M., Benke, J., Mayer, J., Wuttig, M., Nat. Commun. 4, 2371 (2013).CrossRefGoogle Scholar
Orava, J., Greer, A.L., Acta Mater . 139, 226 (2017).CrossRefGoogle Scholar
Kalb, J.A., Wuttig, M., Spaepen, F., J. Mater. Res. 22, 748 (2007).CrossRefGoogle Scholar
Lankhorst, M.H.R., J. Non Cryst. Solids 297, 210 (2002).CrossRefGoogle Scholar
Cho, J.-Y., Kim, D., Park, Y.-J., Yang, T.-Y., Lee, Y.-Y., Joo, Y.-C., Acta Mater . 94, 143 (2015).CrossRefGoogle Scholar
Chen, B., ten Brink, G.H., Palasantzas, G., Kooi, B.J., J. Phys. Chem. C 121, 8569 (2017).CrossRefGoogle Scholar
Zalden, P., von Hoegen, A., Landreman, P., Wuttig, M., Lindenberg, A.M., Chem. Mater. 27, 5641 (2015).CrossRefGoogle Scholar
Orava, J., Weber, H., Kaban, I., Greer, A.L., J. Chem. Phys. 144, 194503 (2016).CrossRefGoogle Scholar
Orava, J., Hewak, D.W., Greer, A.L., Adv. Funct. Mater. 25, 4851 (2015).CrossRefGoogle Scholar
Pries, J., Wei, S., Wuttig, M., Lucas, P., Adv. Mater. 31, 1900784 (2019).CrossRefGoogle Scholar