Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T17:42:27.488Z Has data issue: false hasContentIssue false

Phase Transitions at the Nanoscale in Functional Materials

Published online by Cambridge University Press:  06 April 2011

Get access

Abstract

Many properties of functional materials are quite different at the nanoscale, because at this length scale, the surface/interface energy becomes comparable to the bulk energy. Thus, the nature of various phase transitions at the nanoscale (e.g., structural, electronic, magnetic, metal-insulator) is altered. In addition, in functional materials with many coupled order parameters, quantum effects can dominate the response. We use the term nanoscale with three different context-specific connotations: it could refer to a cluster of atoms or molecules, a confined geometry as in a nanoscale grain or a superlattice, and a nanoscale region in the bulk. This field is still in its infancy, and much needs to be learned in terms of nucleation and thermodynamics at this scale. Materials of interest that we consider in this issue include, but are not limited to, ferroics (ferroelectrics, ferromagnets, ferroelastics), multiferroics (magnetoelectrics, ferrotoroidics), and complex functional materials such as those that exhibit colossal magnetoresistance and high-temperature superconductivity, including the recently discovered iron pnictide superconductors. Superconductors provide a fertile ground for quantum phase transitions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nye, J.F., Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, Oxford, 1985).Google Scholar
2.Otsuka, K., Wayman, C.M., Shape Memory Materials (Cambridge University Press, Cambridge, 1999).Google Scholar
3.Wadhawan, V.K., Introduction to Ferroic Materials (Gordon and Breach, Amsterdam, 2000).CrossRefGoogle Scholar
4.Schmid, H., Ferroelectrics 162, 317 (1994).CrossRefGoogle Scholar
5.Mathur, N., Littlewood, P., Nat. Mater. 3, 207 (2004).CrossRefGoogle Scholar
6.Bishop, A.R., J. Phys. Conf. Ser. 108, 12027 (2008).CrossRefGoogle Scholar
7.Hosono, H., J. Phys. Soc. Jpn. 77 (Suppl. C), 1 (2008).CrossRefGoogle Scholar
8.Martin, R.M., Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, Cambridge, 2004).CrossRefGoogle Scholar
9.Leach, A.R., Molecular Modeling: Principles and Applications (Addison Wesley Longman Ltd., Essex, 1996).Google Scholar
10.Saxena, A., Lookman, T., Handbook of Materials Modeling, Yip, S., Ed. (Springer Science BM, Dordrecht, 2005).Google Scholar
11.Ahn, K.H., Lookman, T., Bishop, A.R., Nature 428, 401 (2004).CrossRefGoogle Scholar
12.Porta, M., Castan, T., Lloveras, P., Lookman, T., Saxena, A., Shenoy, S.R., Phys. Rev. B 79, 214117 (2009).CrossRefGoogle Scholar
13.MRS Bull. 30 (6) (2005).Google Scholar
14.Sarkar, S., Ren, X., Otsuka, K., Phys. Rev. Lett. 95, 205702 (2005).CrossRefGoogle Scholar
15.Samara, G.A., J. Phys. Condens. Matter 15, R367 (2003).CrossRefGoogle Scholar
16.Mydosh, J.A., Spin Glasses (Taylor & Francis, Philadelphia, 1993).Google Scholar
17.Waitz, T., Acta Mater. 53, 2273 (2005).CrossRefGoogle Scholar
18.Tanner, L.E., Schryvers, D., Shapiro, S.M., Mater. Sci. Eng. A 127, 205 (1990).CrossRefGoogle Scholar
19.Xu, Z., Kim, M.C., Li, J.F., Viehland, D., Philos. Mag. A 74, 395 (1996).CrossRefGoogle Scholar
20.Murakami, Y., Shindo, D., Oikawa, K., Kainuma, R., Ishida, K., Acta Mater. 50, 2173 (2002).CrossRefGoogle Scholar
21.Ahn, C.H., Rabe, K.M., Triscone, J.-M., Science 303, 488 (2004).CrossRefGoogle Scholar
22.Fong, D.D., Stephenson, G.B., Streiffer, S.K., Eastman, J.A., Auciello, O., Fuoss, P.H., Thompson, C., Science 304, 1650 (2004).CrossRefGoogle Scholar
23.Zhang, J., Yin, Z., Zhang, M.-S., Scott, J.F., Solid State Commun. 118, 241 (2001).CrossRefGoogle Scholar
24.Mihailova, B., Bismayer, U., Guttler, B., Gospodinov, M., Boris, A., Berndhard, C., Aroyo, M., Z. Kristallogr. 220, 740 (2005).CrossRefGoogle Scholar
25.Zhong, W., Vanderbilt, D., Rabe, K.M., Phys. Rev. B 52, 6301 (1995).CrossRefGoogle Scholar
26.Naumov, I.I., Bellaiche, L., Fu, H., Nature 432, 737 (2004).CrossRefGoogle Scholar
27.Cheon, J., Park, J.-I, Choi, J.-S., Jun, Y.-W., Kim, S., Kim, M.G., Kim, Y.-M, Kim, Y.J., Proc. Nat. Acad. Sci. U.S.A. 103, 3023 (2006).CrossRefGoogle Scholar
28.Vaz, C.A.F., Hayward, T.J., Llandro, J., Schackert, F., Morecroft, D., Bland, J.A.C., Kläui, M., Laufenberg, M., Backes, D., Rüdiger, U., Castano, F.J., Ross, C.A., Heyderman, L.J., Nolting, F., Locatelli, A., Faini, G., Cherifi, S., Wernsdorfer, W., J. Phys. Condens. Matter 19, 255207 (2007).CrossRefGoogle Scholar
29.Belotelov, V.I., Kotov, V.A., Zvezdin, A.K., Phase Trans. 79, 1135 (2006).CrossRefGoogle Scholar
30.Akola, J., Jones, R.O., Phys. Rev. B 76, 235201 (2007); J. Phys. Condens. Matter 20, 465103 (2008).CrossRefGoogle Scholar
31.Wuttig, M., Yamada, N., Nat. Mater. 6, 824 (2007).CrossRefGoogle Scholar
32.Cheong, S.-W., Mostovoy, M., Nat. Mater. 6, 13 (2007).CrossRefGoogle Scholar
33.Spaldin, N.A., Fiebig, M., Mostovoy, M., J. Phys. Condens. Matter 20, 434203 (2008).CrossRefGoogle Scholar
34.Aken, B.B. Van, Rivera, J.P., Schmid, H., Fiebig, M., Nature 449, 702 (2007).CrossRefGoogle Scholar
35.MRS Bull. 33 (11) (2008).Google Scholar
36.Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H., J. Am. Chem. Soc. 130, 3296 (2008).CrossRefGoogle Scholar
37.Vinokur, V.M., Baturina, T.I., Fistul, M.V., Mironov, A.Y., Baklanov, M.R., Nature 452, 613 (2008).CrossRefGoogle Scholar
38.Gobert, D., Schollwock, U., Delft, J. Von, Euro. Phys. J. B 38, 501 (2004).CrossRefGoogle Scholar
39.Bednorz, J.G., Müller, K.A., Z. Phys. B: Condens. Matter 64, 189 (1986).CrossRefGoogle Scholar
40.Aeppli, G., Mason, T.E., Hayden, S.M., Mook, H.A., Kulda, J., Science 278, 1432 (1997).CrossRefGoogle Scholar
41.Harshman, D.R., Aeppli, G., Batlogg, B., Espinosa, G.P., Cava, R.J., Cooper, A.S., Rupp, L.W., Ansaldo, E.J., Williams, D.L., Phys. Rev. Lett. 63, 1187 (1989).CrossRefGoogle Scholar
42.Hanaguri, T., Lupien, C., Kohsaka, Y., Lee, D.-H., Azuma, M., Takano, M., Takagi, H., Davis, J.C., Nature 430, 1001 (2004).CrossRefGoogle Scholar
43.Zaanen, J., Gunnarsson, O., Phys. Rev. B 40, 7391 (1989).CrossRefGoogle Scholar
44.Kivelson, S.A., Fradkin, E., Emery, V.J., Nature 393, 550 (1998).CrossRefGoogle Scholar
45.Phillips, J.C., Saxena, A., Bishop, A.R., Rep. Prog. Phys. 66, 2111 (2003).CrossRefGoogle Scholar
46.Midgley, P.A., Hayden, S.M., Taillefer, L., Bogenberger, B., Lähneysen, H.V., Phys. Rev. Lett. 70, 678 (1993).CrossRefGoogle Scholar
47.Aeppli, G., Bishop, D.J., Broholm, C., Bucher, E., Siemensmeyer, K., Stusser, N., Steiner, M., Phys. Rev. Lett. 63, 676 (1989).CrossRefGoogle Scholar
48.Broholm, C., Kjems, J.K., Buyers, W.J., Matthews, P., Palstra, T.T., Menovsky, A.A., Mydosh, J.A., Phys. Rev. Lett. 58, 1467 (1987).CrossRefGoogle Scholar
49.Dai, J., Si, Q., Zhu, J.-X., Abrahams, E., Proc. Nat. Acad. Sci. 106, 4118 (2009).CrossRefGoogle Scholar
50.Haviland, D.B., Liu, Y., Goldman, A.M., Phys. Rev. Lett. 62, 2180 (1989).CrossRefGoogle Scholar
51.Hebard, A.F., Paalanen, M.A., Phys. Rev. Lett. 65, 927 (1990).CrossRefGoogle Scholar
52.Fisher, M.P.A., Phys. Rev. Lett. 65, 923 (1990).CrossRefGoogle Scholar
53.Steiner, M.A., Breznay, N., Kapitulnik, A., Phys. Rev. B 77, 212501 (2008).CrossRefGoogle Scholar
54.Day, C., Phys. Today 62 (8), 36 (2009).CrossRefGoogle Scholar
55.Padilla, W.L., Basov, D.N., Smith, D.R., Mater. Today 9 (July-August), 28 (2006).CrossRefGoogle Scholar