Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T13:43:59.538Z Has data issue: false hasContentIssue false

Phase Transformations of Nanocrystalline Martensitic Materials

Published online by Cambridge University Press:  06 April 2011

Get access

Abstract

The physical phenomena and engineering applications of martensitic phase transformations are the focus of intense ongoing research. The martensitic phase transformation and functional properties such as the shape-memory effect and superelasticity are strongly affected by the crystal size at the nanoscale. The current state of research on the impact of crystal size on the phase stability of the martensite is reviewed summarizing experimental results of various nanostructured martensitic materials and discussing the corresponding theoretical approaches. The review outlines the effects of crystal size on the complex morphology of the martensite, leading to interface structures not encountered in coarse-grained bulk materials. The unique shape-memory properties of martensitic materials can persist even at the nanoscale. Nanocrystalline martensitic materials can be processed to obtain tailored functional properties in combination with enhanced strength. Structural changes of metallic nanowires are similar to those arising by martensitic phase transformations and also can lead to shape-memory effects, as predicted by atomistic simulations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Olson, G.B., in Martensite, Olson, G.B., Cohen, W.S., Eds. (AMS International, Materials Park, OH, 1992), p.1.Google Scholar
2.Otsuka, K., Wayman, C.M., Shape Memory Materials (Cambridge University Press, Cambridge, 1998).Google Scholar
3.Bhattacharya, K., Conti, S., Zanzotto, G., J.Zimmer, Nature 428, 55 (2004).CrossRefGoogle Scholar
4.Duerig, T., Pelton, A., Stöckel, D., Mater. Sci. Eng. A273–275, 149 (1999).CrossRefGoogle Scholar
5.Morgan, N.B., Mater. Sci. Eng. A378, 16 (2004).CrossRefGoogle Scholar
6.Humbeeck, J. Van, Mater. Sci. Eng. A273–275, 149 (1999).Google Scholar
7.Saadat, S., Salichs, J., Noori, M., Hou, Z., Davoodi, H., Baron, I., Suzuki, Y., Masuda, A., Smart Mater. Struct. 11, 218 (2002).CrossRefGoogle Scholar
8.Chau, E.T.F., Friend, C.M., Allen, D.M., Hora, J., Webster, J.R., Mater. Sci. Eng. A438–440, 589 (2006).CrossRefGoogle Scholar
9.Williams, E., Elahinia, M.H., J. Intell. Mater. Syst. Struct. 19, 1425 (2008).CrossRefGoogle Scholar
10.Bendahan, M., Aguir, K., Seguin, J.L., Carchano, H., Sens. Actuators 74, 242 (1999).CrossRefGoogle Scholar
11.Krulevitch, P., Lee, A.P., Ramsey, P.B., Trevino, J.C., Hamilton, J., Northrup, M.A., J.Microelectromech. Syst. 5, 270 (1996).CrossRefGoogle Scholar
12.Bhattacharya, K., James, R.D., Science 307, 53 (2005).CrossRefGoogle Scholar
13.Tomozawa, M., Kim, H.Y., Miyazaki, S., Acta Mater. 57 441 (2009).CrossRefGoogle Scholar
14.Bellouard, Y., Mater. Sci. Eng. A481–482, 582 (2006).Google Scholar
15.Valiev, R.Z., Nat. Mater. 3, 511 (2004).CrossRefGoogle Scholar
16.Bhattacharya, K., Microstructure of Martensite (Oxford University Press, Oxford, 2003).CrossRefGoogle Scholar
17.Wen, C., Huang, B., Chen, Z., Rong, Y., Mater. Sci. Eng. A438–440, 420 (2006).CrossRefGoogle Scholar
18.Kitakami, O., Sato, H., Shimada, Y., Phys. Rev. B 56, 13849 (1997).CrossRefGoogle Scholar
19.Rong, Y., Meng, Q., Zhang, Y., Hsu, T.Y., Mater. Sci. Eng. A438–440, 414 (2006).CrossRefGoogle Scholar
20.Frommen, C., Wilde, G., Rösner, H., J. Alloys Comp. 377, 232 (2004).CrossRefGoogle Scholar
21.Waitz, T., Kazykhanov, V., Karnthaler, H.P., Acta Mater. 52, 137 (2004).CrossRefGoogle Scholar
22.Wang, H., Liu, Q., Zhang, J., Hsu, T.Y., Nanotech. 14, 696 (2003).CrossRefGoogle Scholar
23.Asaka, K., Kitahata, E., Hirotsu, Y., Kifune, K., Kubota, Y., Tadaki, T., Scripta Mater. 44, 2043 (2001).CrossRefGoogle Scholar
24.Pitcher, M.W., Ushakov, S.V., Navrotsky, A., Woodfield, B.F., Li, G., Boerio-Goates, J., Tissue, B.M., J.Am. Ceram. Soc. 88, 160 (2005).CrossRefGoogle Scholar
25.Mayo, M.J., Suresh, A., Porter, W.D., Rev. Adv. Mater. Sci. 5, 203 (2003).Google Scholar
26.Eiserling, F.A., in Bacteriophage T4, Mathews, C.K., Ed. (American Society of Microbiology, Washington, DC, 1983), p.11.Google Scholar
27.Falk, W., James, R.D., Phys. Rev. E 73, 011917 (2006).CrossRefGoogle Scholar
28.Tadaki, T., Kifune, K., Kubota, Y., Yamaoka, H., Mater. Sci. Eng. A438–440, 407 (2006).CrossRefGoogle Scholar
29.Kajiwara, S., Ohno, S., Honma, K., Philos. Mag. 63, 625 (1991).CrossRefGoogle Scholar
30.Waitz, T., Karnthaler, H.P., Acta Mater. 52, 5461 (2004).CrossRefGoogle Scholar
31.Glezer, A.M., Blinova, E.N., Pozdnyakov, V.A., Shelyakov, A.V., J.Nanopart. Res. 5, 551 (2003).CrossRefGoogle Scholar
32.Lin, M., Olson, G.B., Cohen, M.. Acta Metall. 41, 253 (1993).CrossRefGoogle Scholar
33.Evans, A.G., Burlingame, N., Drory, M., Kriven, W.M.. Acta Metall. 29, 447 (1981).CrossRefGoogle Scholar
34.Waitz, T., Spisák, D., Hafner, J., Karnthaler, H.P., Europhys. Lett. 71, 98 (2005).CrossRefGoogle Scholar
35.Tong, Y., Liu, Y., Miao, J., Zhao, L., Scripta Mater. 52, 983 (2005).CrossRefGoogle Scholar
36.Fu, Y.Q., Zhang, S., Wu, M.J., Huang, W.M., Du, H.J., Luo, J.K., Flewitt, A.J., Milne, W.I., Thin Solid Films 515, 80 (2006).CrossRefGoogle Scholar
37.Wan, D., Komovopoulos, K., J.Mater. Res. 20, 1606 (2005).CrossRefGoogle Scholar
38.Buschbeck, J., Niemann, R., Heczko, O., Thomas, M., Schultz, L., Fähler, S., Acta Mater. 57, 2516 (2009).CrossRefGoogle Scholar
39.Zarnetta, R., Zelaya, E., Eggeler, G., Ludwig, A., Scripta Mater. 60, 352 (2009).CrossRefGoogle Scholar
40.Frick, C.P., Orso, S., Arzt, E., Acta Mater. 55, 3845 (2007).CrossRefGoogle Scholar
41.Juan, J.M. San, , M.L., Schuh, C.A., Adv. Mater. 20, 272 (2008).CrossRefGoogle Scholar
42.Juan, J.M. San, , M.L., Schuh, C.A., Nat. Nanotech. 4, 415 (2009).CrossRefGoogle Scholar
43.Li, S., Zheng, W.T., Jiang, Q., Scripta Mater. 54, 2091 (2006).CrossRefGoogle Scholar
44.Seki, K., Kura, H., Sato, T., Taniyama, T., J.Appl. Phys. 103, 063910 (2008).CrossRefGoogle Scholar
45.Yang, H.S., Bhadeshia, H.K.D.H., Scripta Mater. 60, 493 (2009).CrossRefGoogle Scholar
46.Liu, D.M., Nie, Z.H., Wang, Y.D., Liu, Y.D., Wang, G., Ren, Y., Zuo, L., Metal. Mater. Trans. 39A, 466 (2008).CrossRefGoogle Scholar
47.Waitz, T., Antretter, T., Fischer, F.D., Karnthaler, H.P., Mater. Sci. Technol. 24, 934 (2008).CrossRefGoogle Scholar
48.Howe, J.M., Interfaces in Materials: Atomic Structure, Kinetics and Thermodynamics of Solid-Vapor, Solid-Liquid and Solid-Solid Interfaces (Wiley, New York, 1997).Google Scholar
49.Fischer, F.D., Waitz, T., Vollath, D., Simha, N., Progr. Mater. Sci. 53, 481 (2008).CrossRefGoogle Scholar
50.Qin, W., Chen, Z.H., J. Alloys Comp. 322, 286 (2001).CrossRefGoogle Scholar
51.Meng, Q., Zhou, N., Rong, Y., Chen, S., Hsu, T.Y., Acta Mater. 50, 4563 (2002).CrossRefGoogle Scholar
52.Asaka, K., Tadaki, T., Hirotsu, Y., Philos. Mag. A 82, 463 (2002).CrossRefGoogle Scholar
53.Meng, Q., Rong, Y., Hsu, T.Y., Phys. Rev. B 65, 174118 (2002).CrossRefGoogle Scholar
54.Waitz, T., Antretter, T., Fischer, F.D., Simha, N.K., Karnthaler, H.P.. J. Mech. Phys. Solids 55, 419 (2007).CrossRefGoogle Scholar
55.Cech, R.E., Turnbull, D., Trans. AIME 206, 124 (1956).Google Scholar
56.Chen, I.W., Chiao, Y.H., Acta Metall. 33, 1847 (1985).CrossRefGoogle Scholar
57.Chen, I.W., Chiao, Y.H., Acta Metall. 33, 1827 (1985).CrossRefGoogle Scholar
58.Ibarra, A., Caillard, D., Juan, J. San, , M.L., Appl. Phys. Lett. 90, 101907 (2007).CrossRefGoogle Scholar
59.Li, B., Zhang, X.M., Clapp, P.C., Rifkin, J.A., J.Appl. Phys. 95, 1698 (2004).CrossRefGoogle Scholar
60.Zhang, W., Jin, Y.M., Khachaturyan, A.G., Acta Mater. 55, 565 (2007).CrossRefGoogle Scholar
61.Suzuki, T., Shimono, M., Wuttig, M., Scripta Mater. 44, 1979 (2001).CrossRefGoogle Scholar
62.Kolluri, K., Gungor, M.R., Maroudas, D., Phys. Rev. B 78, 195408 (2008).CrossRefGoogle Scholar
63.Grünwald, M., Dellago, C., Nano Lett. 9, 2099 (2009).CrossRefGoogle Scholar
64.Pozdnyakov, V.A., Bull. Russ. Acad. Sci. 69 1435 (2005).Google Scholar
65.Cohen, M., Mater. Trans. JIM 33, 178 (1992).CrossRefGoogle Scholar
66.Tamura, I., in Martensite, Olson, G.B., Cohen, W.S., Eds. (AMS International, Materials Park, OH, 1992), p.227.Google Scholar
67.Ren, X., Otsuka, K., Progr. Mater. Sci. 50, 511 (2005).Google Scholar
68.Bouville, M., Ahluwalia, R., Acta Mater. 56, 3558 (2009).CrossRefGoogle Scholar
69.Ball, J.M., James, R.D., Arch. Ration. Mech. Anal. 100, 13 (1987).CrossRefGoogle Scholar
70.Khachaturyan, A.G., Theory of Structural Transformations in Solids (Wiley, New York, 1983).Google Scholar
71.James, R.D., Hane, K.F., Acta Mater. 48, 197 (2000).CrossRefGoogle Scholar
72.Zhang, M.X., Kelly, P.M., Progr. Mater Sci. 54, 1101 (2009).CrossRefGoogle Scholar
73.Liu, D.Z., Dunne, D., Scripta Mater. 48, 1611 (2003).CrossRefGoogle Scholar
74.Khachaturyan, A.G., Shapiro, S.M., Semenovskaya, S., Phys. Rev. B 43, 10832 (1991).CrossRefGoogle Scholar
75.Hackl, K., Schmidt-Baldassari, M., Zhang, W., Eggeler, G.. Mater. Sci. Eng. A378, 499 (2004).CrossRefGoogle Scholar
76.Monzen, R., Mori, M., Philos. Mag. Lett. 75, 351 (1997).CrossRefGoogle Scholar
77.Kohn, R.V., Müller, S., Philos. Mag. A 66, 697 (1993).CrossRefGoogle Scholar
78.Schryvers, D., Philos. Mag. A 68, 1017 (1993).CrossRefGoogle Scholar
79.Arlt, G., J.Mater. Sci. 25, 2655 (1990).CrossRefGoogle Scholar
80.Fischer, F.D., Reisner, G., Acta Mater. 46, 2095 (1998).CrossRefGoogle Scholar
81.Tang, J., Zhang, F., Zoogman, P., Fabbri, J., Chan, S.W., Zhu, Y., Brus, L.E., Steigerwald, M.L., Adv. Funct. Mater. 15, 1595 (2005).CrossRefGoogle Scholar
82.Bhattacharya, K., James, R.D., J. Mech. Phys. Solids 47, 531 (1999).CrossRefGoogle Scholar
83.Shu, Y.C., Yen, J.H., Acta Mater. 56, 3969 (2008).CrossRefGoogle Scholar
84.Waitz, T., Acta Mater. 55, 2273 (2005).CrossRefGoogle Scholar
85.Waitz, T., Pranger, W., Antretter, T., Fischer, F.D., Karnthaler, H.P., Mater. Sci. Eng. A481–482, 479 (2008).CrossRefGoogle Scholar
86.Frick, C.P., Lang, T.W., Spark, K., Gall, K., Acta Mater. 54, 2223 (2006).CrossRefGoogle Scholar
87.Li, Z.Q., Sun, Q.P., Int. J.Plast 18, 1481 (2002).CrossRefGoogle Scholar
88.Feng, P., Sun, Q.P., J. Mech. Phys. Solids 54, 1568 (2006).CrossRefGoogle Scholar
89.Mao, S.C., Han, X.D., Zhang, Z., Wu, M.H., J.Appl. Phys. 101, 103522 (2007).CrossRefGoogle Scholar
90.Prokoshkin, S.D., Brailovski, V., Inaekyan, K.E., Demers, V., Khmelevskaya, I.Yu., Dobatkin, S.V., Tatyanin, E.V., Mater. Sci. Eng. A481–482, 114 (2008).CrossRefGoogle Scholar
91.Song, R., Ponge, D., Raabe, D., Speer, J.G., Matlock, D.K., Mater. Sci. Eng. A441, 1 (2006).CrossRefGoogle Scholar
92.Kockar, B., Karaman, I., Kim, J.I., Chumlyakov, Y.I., Sharp, J., Yu, C.J., Acta Mater 56, 3630 (2008).CrossRefGoogle Scholar
93.Demers, V., Brailovski, V., Prokoshkin, S.D., Inaekyan, K.E, Mater. Sci. Eng. A513–514, 185 (2009).CrossRefGoogle Scholar
94.Sun, Q.P., He, Y.J., Int. J.Solids Struct. 45, 3868 (2008).CrossRefGoogle Scholar
95.Tsuchiya, K., Hada, Y., Koyano, T., Nakajima, K., Ohnuma, M., Koike, T., Todaka, Y., Umemoto, M., Scripta Mater. 60, 749 (2009).CrossRefGoogle Scholar
96.Imashev, R.N., Mulyukov, K.Y., Koledov, V.V., Shavrov, V.G., J.Phys. Condens. Matter 17, 2129 (2005).CrossRefGoogle Scholar
97.Gunderov, D., Lukyanov, A., Prokofiev, E., Kilmametov, A., Pushin, V., Valiev, R.Z., Mater. Sci. Eng. A503, 75 (2009).CrossRefGoogle Scholar
98.Liang, W., Zhou, M., Philos. Mag. 87, 2191 (2007).CrossRefGoogle Scholar
99.Park, H.S., Cai, W., Espinosa, H.D., Huang, H., MRS Bull. 34, 187 (2009).CrossRefGoogle Scholar
100.Chen, F., Johnston, R.L., Appl. Phys. Lett. 92, 023112 (2008)CrossRefGoogle Scholar