Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T13:43:16.917Z Has data issue: false hasContentIssue false

Perturbed-Angular-Correlation Spectroscopy: Renaissance of a Nuclear Technique

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

During the past decade, perturbed-angular-correlation (PAC) spectroscopy has emerged as an important technique in several areas of materials science. PAC spectroscopy is used to measure the effects of local fields at well-defined lattice sites in a crystal. These measurements can provide unique information about the structures, kinetics, and energetics associated with point defects, the mechanisms of phase transitions, and the strengths and symmetries of chemical bonds of atoms on surfaces and at interfaces. In what follows, I describe the PAC technique in the context of several examples of these applications and I comment on the historical evolution of this spectroscopy.

Hyperfine Interactions

The field of hyperfine interactions encompasses spectroscopic techniques that use the electric and magnetic nuclear moments to measure the specific extranuclear environment of the nuclear moments. Examples of these techniques are nuclear-magnetic-resonance (NMR), nuclear-quadrupole-resonance (NQR), electron-paramagnetic-resonance (EPA), muon-spin-rotation (MSR), Mössbauer-effect (ME), and perturbed-angular-correlation (PAC) spectroscopies. Each of these techniques is well-suited to certain types of measurements but useless for others. For example, NMR spectroscopy can be particularly useful for measuring chemical shifts associated with nuclei of atoms that are major constituents of crystalline solids. However, nuclear electricquadrupole interactions associated with some NMR-active nuclei are not only difficult to measure but they often obscure much of the chemical-shift information by producing spectral-line broadening. PAC spectroscopy can be used to accurately measure the nuclear electric-quadrupole interactions at the sites of nuclei of atoms that are trace dopants in crystals. But the PAC technique is insensitive to the effects of local charge distributions that produce the NMR chemical shifts. ME spectroscopy can be used to measure both of these effects as well as nuclear magnetic-dipole interactions. However, ME measurements are often only practical on crystals that have one of several elements as a major constituent, that is, either Fe or Sn. In addition, the ME sensitivity depends on temperature, and the NMR and EPR sensitivities also depend on temperature. However, the PAC measurement is independent of temperature, which can be a great advantage for studying phenomena such as phase transitions.

Type
Technical Features
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For a comparison of various hyperfine-interaction spectroscopies, see Butz, T., ed., Nuclear Spectroscopy and Charge Density Wave Systems (Kluwer Academic, Norwell, MA, 1992) p. 325.CrossRefGoogle Scholar
2.Abragam, A. and Pound, R.V., Phys. Rev. 92 (1953) p. 943.CrossRefGoogle Scholar
3.Mössbauer, R., Z. Physik 151 (1958) p. 124.CrossRefGoogle Scholar
4. See, for example, Kaufmann, E.N., Raghavan, P., Raghavan, R.S., Krien, K., and Naumann, R.A., Phys. Status Solidi B 63 (1974) p. 719; or A.R. Churan-Long, A. Li-Scholz, and R.L. Rasera, Phys. Rev. B 8 (1973) p. 1,791.CrossRefGoogle Scholar
5. See, for example, Reno, R.C. and Hohenemser, C., Phys. Rev. Lett. 25 (1970) p. 1,007.CrossRefGoogle Scholar
6. See, for example, Meares, C., Bryant, R., Baldeschwieler, J., and Shirley, D.A., Proc. Natl. Acad. Sci. 64 (1969) p. 1,155.CrossRefGoogle Scholar
7.Haas, H. and Shirley, D.A., J. Chem. Phys. 58 (1973) p. 3,339.CrossRefGoogle Scholar
8. See, for example, Rasera, R.L. and Catchen, G.L., Ferroelectrics 151/2 (1993) p. 151.CrossRefGoogle Scholar
9. For a more detailed description, see Catchen, G.L., J. Mater. Educ. 12 (1990) p. 253; ibid., Hyperfine Interactions 88 (1994) p. 1 and references therein.Google Scholar
10.Rearick, T.M., Catchen, G.L., and Adams, J.M., Phys. Rev. B 48 (1993) p. 224.CrossRefGoogle Scholar
11.Adams, J.M. and Catchen, G.L., Phys. Rev. B 50 (1994) p. 1,264.CrossRefGoogle Scholar
12.Catchen, G.L. and Spaar, D.M., Phys. Rev. B 44 (1991) p. 12,137.CrossRefGoogle Scholar
13.Catchen, G.L., Rearick, T.M., and Schlom, D.G., Phys. Rev. B 49 (1994) p. 318.CrossRefGoogle Scholar
14. See, for example, Shirley, D.A., Rosenblum, S.S., and Matthias, E., Phys. Rev. 170 (1968) p. 363.CrossRefGoogle Scholar
15. For a recent review, see Collins, G.S., Shropshire, S.L., and Fan, J., Hyperfine Interactions 54 (1990) p. 1.CrossRefGoogle Scholar
16.Recknagel, E., Schatz, G., and Wiehert, T., “Hyperfine Interactions of Defects in Metals,” in Hyperfine Interactions of Radioactive Nuclei, edited by Christiansen, J. (Topics in Current Phys. 31, Springer, Berlin, 1983).CrossRefGoogle Scholar
17.Adams, J.M., Fu, J., Catchen, G.L., and Miller, D.L., Appl. Phys. Lett. 61 (1992) p. 2,668.CrossRefGoogle Scholar
18.Fan, J., PhD thesis, Washington State University, 1992.Google Scholar
19.Chow, L., Zhao, X., and Collins, G.S., Phys. Rev. B 45 (1992) p. 4,672.CrossRefGoogle Scholar
20.Wiehert, T. and Swanson, M.L., J. Appl. Phys. 66 (1989) p. 3,026.CrossRefGoogle Scholar
21.Hughes, W.C., Swanson, M.L., and Austin, J.C., Appl. Phys. Lett. 59 (1991) p. 938.CrossRefGoogle Scholar
22.Wiehert, T., Krings, T., and Wolf, H., Physica B 185 (1993) p. 297.CrossRefGoogle Scholar
23. For a report of the initial work, see Griffith, J.W., Lindquist, R., Platzer, R., and Gardner, J.A., Mater. Sci. Forum: Defects in Semicond. 17 (1993) p. 405.CrossRefGoogle Scholar
24.Austin, J.C., Swanson, M.L., and Hughes, W.C., J. Phys. Conden. Matter 46 (1993) p. 8,829.CrossRefGoogle Scholar
25.Catchen, G.L., Adams, J.M., and Rearick, T.M., Phys. Rev. B 46 (1992) p. 2,743.CrossRefGoogle Scholar
26.Birnie, D.P. and Catchen, G.L., J. Mater. Res. 8 (1993) p. 1,379.CrossRefGoogle Scholar
27.Su, H-T., Wang, R., Fuchs, H., Gardner, J.A., Evenson, W.E., and Sommers, J.A., J. Am. Ceram. Soc. 73 (1990) p. 3,215.CrossRefGoogle Scholar
28.Baudry, A., Boyer, P., and deOliveira, A.L., J. Phys. Chem. Solids 43 (1982) p. 871.CrossRefGoogle Scholar
29.Wang, R., Gardner, J.A., Evenson, W.E., and Sommers, J.A., Phys. Rev. B (1993) p. 638.CrossRefGoogle Scholar
30.Evenson, W.E., Gardner, J.A., Wang, R., Su, H-T., and McKale, A.G., Hyperfine Interactions 62 (1990) p. 283.CrossRefGoogle Scholar
31.Forker, M., Herz, W., and Simon, D., Nucl. Instrum. Methods Phys. Research A 337 (1994) p. 534.CrossRefGoogle Scholar
32.Baudry, A. and Boyer, P., Hyperfine Interactions 35 (1987) p. 803.CrossRefGoogle Scholar
33.Catchen, G.L. and Rearick, T.M. (unpublished manuscript).Google Scholar
34.Hohenemser, C., Rosov, N., and Kleinhammes, A., Hyperfine Interactions 49 (1989) p. 267.CrossRefGoogle Scholar
35.Hohenemser, C., Kochowski, T., and Bergstresser, T.K., Phys. Rev. B 13 (1976) p. 3,154.CrossRefGoogle Scholar
36.Birnie, D.P., J. Am. Ceram. Soc. 74 (1991) p. 988.CrossRefGoogle Scholar
37.Catchen, G.L., Rasera, R.L., Randall, C.A., Smith, D.K., and Kurtz, S.K., Phys. Rev. B 45 (1991) p. 5,015 and references therein.CrossRefGoogle Scholar
38.Yeshurun, Y., Schlesinger, Y., and Havlin, S., J. Phys. Chem. Solids 40 (1979) p. 231.CrossRefGoogle Scholar
39.Catchen, G.L., Rearick, T.M., Hollinger, E.F., Esh, D.W., and Adams, J.M., Ferroelectrics 156 (1994) p. 2,113.CrossRefGoogle Scholar
40.Tom, D.W., Platzer, R., Gardner, J.A., and Tate, J., Appl. Phys. Lett. 63 (1993) p. 3,224.CrossRefGoogle Scholar
41.Bartos, A. and Uhrmacher, M., Phys. Rev. B 48 (1993) p. 7,478.CrossRefGoogle Scholar
42.Platzer, R., Tom, D.W., Gardner, J.A., and Tate, J., Bull. Am. Phys. Soc. 39 (1994) p. 246.Google Scholar
43.Krausch, G., Fink, R., Jacobs, K., Kohl, U., Lohmüller, I., Luckscheiter, B., Platzer, R., Runge, B-U., Wöhrmann, U., and Schatz, G., Hyperfine Interactions 78 (1993) p. 261 and references therein.CrossRefGoogle Scholar
44.Hunger, E. and Haas, H., Surface Science 234 (1990) p. 273.CrossRefGoogle Scholar
45.Haas, H., Z. Naturforsch. 50a (1994) p. 407.CrossRefGoogle Scholar
46.Voigt, J., Fink, R., Krausch, G., Luckscheiter, B., Platzer, R., Wöhrmann, U., Ding, X.L., and Schatz, G., Phys. Rev. Lett. 64 (1990) p. 2,202.CrossRefGoogle Scholar
47. See, for example, Klas, T., Fink, R., Krausch, G., Platzer, R., Voigt, J., Wesche, R., and Schatz, G., Surf. Sci. 216 (1989) p. 270.CrossRefGoogle Scholar
48.Fink, R., Krausch, G., Luckscheiter, B., Platzer, R., Wöhrmann, U., and Schatz, G., Phys. Rev. Lett. 70 (1993) p. 2,455.CrossRefGoogle Scholar
49.Krausch, G., Detzel, T., Fink, R., Luckscheiter, B., Platzer, R., Wöhrmann, U., and Schatz, G., Phys. Rev. Lett. 68 (1992) p. 377.CrossRefGoogle Scholar
50.Mohapatra, S.M., Dev, B.N., Lou, L., Thunadt, T., Gibson, W.M., Mishra, K.C., Sahoo, N., and Das, T.P., Rev. Solid State Sci. 4 (1990) p. 873.Google Scholar
51.Fu, J., Adams, J.M., Catchen, G.L., Miller, D.L., Kim, J., Gallagher, M.C., and Willis, R.F., J. Vac. Sci. Technol. B 12 (1994) p. 1,029.CrossRefGoogle Scholar
52.Adams, J.M., Catchen, G.L., Fu, J., and Miller, D.L., Surface Science in press.Google Scholar