Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T16:01:49.689Z Has data issue: false hasContentIssue false

A perspective on coupled multiscale simulation and validation in nuclear materials

Published online by Cambridge University Press:  10 January 2014

M.P. Short
Affiliation:
MIT, Cambridge, MA; [email protected]
D. Gaston
Affiliation:
Idaho National Laboratory; [email protected]
C.R. Stanek
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory; [email protected]
S. Yip
Affiliation:
MIT, Cambridge, MA; [email protected]
Get access

Abstract

The field of nuclear materials encompasses numerous opportunities to address and ultimately solve longstanding industrial problems by improving the fundamental understanding of materials through the integration of experiments with multiscale modeling and high-performance simulation. A particularly noteworthy example is an ongoing study of axial power distortions in a nuclear reactor induced by corrosion deposits, known as CRUD (Chalk River unidentified deposits). We describe how progress is being made toward achieving scientific advances and technological solutions on two fronts. Specifically, the study of thermal conductivity of CRUD phases has augmented missing data as well as revealed new mechanisms. Additionally, the development of a multiscale simulation framework shows potential for the validation of a new capability to predict the power distribution of a reactor, in effect direct evidence of technological impact. The material- and system-level challenges identified in the study of CRUD are similar to other well-known vexing problems in nuclear materials, such as irradiation accelerated corrosion, stress corrosion cracking, and void swelling; they all involve connecting materials science fundamentals at the atomistic- and meso-scales to technology challenges at the macroscale.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Roberto, J., De La Rubia, T., “Basic Research Needs for Advanced Nuclear Energy Systems” (US DOE, 2006).CrossRefGoogle Scholar
Allen, T., Burlet, H., Nanstad, R.K., Samaras, M., Ukai, S., MRS Bull. 34 (1), 20 (2009).Google Scholar
Zinkle, S.J., Was, G.S., Acta Mater. 61 (3), 735 (2013).Google Scholar
Guerin, Y., Was, G.S., Zinkle, S.J., MRS Bull. 34, 10 (2009).Google Scholar
Misra, A., Thilly, L., MRS Bull. 35, 965 (2010).Google Scholar
Gaston, D., Newman, C., Hansen, G., Lebrun-Grandié, D., Nucl. Eng. Des. 239 (10), 1768 (2009).Google Scholar
Tonks, M., Gaston, D., Millet, P., Andrs, D., Paul, T., Comput. Mater. Sci. 51 (1), 20 (2012).Google Scholar
Gaston, D., Permann, C., in International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013), (Sun Valley, ID, 2013).Google Scholar
US Department of Energy; www.casl.gov (accessed July 10, 2013).Google Scholar
Deshon, J., Hussey, D., Kendrick, B., McGurk, J., Secker, J., Short, M.P., JOM 63 (8), 366 (2012).Google Scholar
Short, M.P., Hussey, D., Kendrick, B., Besmann, T., Stanek, C., Yip, S., J. Nucl. Mater. 443 (1–3), 579 (2013).Google Scholar
Adamson, R., Garzarolli, F., Cox, B., Strasser, A., ZIRAT Special Topic Report: Corrosion Mechanisms in Zirconium Alloys (ANT International Skultuna, Sweden, 2007).Google Scholar
Quantitative Micro-Nano Working Group, www.staehleconsulting.com (2013).Google Scholar
Garner, F.A., Gelles, D.S., in Proceedings of Symposium on Effects of Radiation on Materials: 14th International Symposium; ASTM STP 1046 (Philadelphia, 1990).Google Scholar
Garner, F.A., in Comprehensive Nuclear Materials 4, Konings, R.J.M., Ed. (Elsevier, Amsterdam, 2012), pp. 3395.CrossRefGoogle Scholar
Yip, S., Short, M.P., Nat. Mater. 12, 774777 (2013), doi:10.1038/nmat3746.Google Scholar
PWR Axial Offset Anomaly (AOA) Guidelines, Revision 1, EPRI, Palo Alto, CA, 2004 (1008102).Google Scholar
Combrade, P., Scott, P., Foucault, M., Andrieu, E., Marcus, P., Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems (Salt Lake City, UT, 2005).Google Scholar
Yeon, J.-W., Choi, I.-K., Park, K.-K., Kwon, H.-M., Song, K., J. Nucl. Mater. 404 (2), 160 (2010).Google Scholar
Neves, C.F.C., Alvial, G.M., Schvartzman, M.M.A., Alves, L.F.F., Paula, R.G., Energy Mater. 3 (2), 126 (2008).Google Scholar
Bindra, H., Jones, B.G., Colloids Surf. A 397, 85 (2012).Google Scholar
Wells, D., “EPRI Chemistry and Radiation Management PWR Primary Water Chemistry Guidelines Revision Project Updates—Optimized Fuel Crud and SRMP Revision,” in EPRI P-TAC Summer Meeting (EPRI, Atlanta, GA, 2012).Google Scholar
Henshaw, J., McGurk, J., Sims, H.E., Tuson, A., Dickinson, S., Deshon, J., J. Nucl. Mater. 353 (1–2), 1 (2006).Google Scholar
Modeling PWR Fuel Corrosion Product Deposition and Growth Process: Final Report, EPRI, Palo Alto, CA, 2005 (1011743).Google Scholar
Cohen, P., AlChE. Symp. Ser. 70, 71 (1974).Google Scholar
Pan, C., Jones, B., Machiels, A.J., Nucl. Eng. Des. 99, 317 (1987).Google Scholar
Haq, I., Cinosi, N., Bluck, M., Hewitt, G., Walker, S., Nucl. Eng. Des. 241 (1), 155 (2011).Google Scholar
Simulated Fuel Crud Thermal Conductivity Measurements under Pressurized Water Reactor Conditions. EPRI, Palo Alto, CA, 2011 (1022896).Google Scholar
Uhle, J., “Boiling Heat Transfer Characteristics of Steam Generator U-Tube Fouling” (Cambridge, MA, 1996).Google Scholar
Kingery, W.D., Francl, J., Coble, R.L., Vasilos, T., J. Am. Ceram. Soc. 37 (2), 107 (1954).Google Scholar
“Thermal Expansion, Heat Capacity and Thermal Conductivity of Nickel Ferrite (NiFe2O4),” Los Alamos Technical Report, Number LA-UR-13–28786 (2013).Google Scholar
President’s Information Technology Advisory Committee, “Computational Science—Ensuring America’s Competitiveness” (Arlington, VA, 2005).Google Scholar
National Science Foundation, “Simulation-Based Engineering Science—Revolutionizing Engineering Science through Simulation” (Wiley, NY, 2006).Google Scholar
Kirk, B.S., Peterson, J.W., Stogner, R.H., Carey, G.F., Eng. Comput. 22 (3–4), 237 (2006).Google Scholar
Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M., Curfman McInnes, L., Smith, B., Zhang, H., “PETSc User’s Manual” (Argonne National Laboratory, TN, 2013).Google Scholar
Wang, Y., in International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2013) (Sun Valley, ID, 2013).Google Scholar
Zhang, H., Zou, L., Andrs, D., Zhao, H., Martineau, R., in International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013) (Sun Valley, ID, 2013).Google Scholar
Williamson, R.L., Hales, J.D., Novascone, S.R., Tonks, M.R., Gaston, D.R., Permann, C.J., Andrs, D., Martineau, R.C., J. Nucl. Mater. 423, 149 (2012).Google Scholar
Walter, D., Collins, B., Petrov, V., Kendrick, B.K., Manera, A., Downar, T., in The 15th International Topical Meeting on Nuclear Reactor Thermalhydraulics, NURETH-15 (Pisa, Italy, 2013).Google Scholar
US Department of Energy, “From Quanta to the Continuum: Opportunities for Mesoscale Science” (2012).Google Scholar
Crabtree, G.W., Sarrao, J.L., MRS Bull. 37, 1079 (2012).Google Scholar
Laughlin, R.B., Pines, D., Schmalian, J., Stojkovic, B.P., Wolynes, P., Proc. Natl. Acad. Sci. U.S.A. 97, 32 (2000).Google Scholar
Was, G.S., Andresen, P.L., JOM 44 (4), 8 (1992).Google Scholar
Garzarolli, F., Adamson, R., Cox, B., Strasser, A., in ZIRAT Special Topic Report: Corrosion Mechanisms in Zirconium Alloys (ANT International, Sweden, 2007).Google Scholar
Idaho National Laboratory, “BISON Enables Complex Nuclear Fuel Modeling, Simulation,”https://inlportal.inl.gov/portal/server.pt/community/newsroom/257/feature_story_details/1269?featurestory=DA_612645 (accessed 2013).Google Scholar
Evaluation of Fuel Clad Corrosion Product Deposits and Circulating Corrosion Products in PWRs, EPRI, Palo Alto, CA, and Westinghouse Electric Company, Pittsburgh, PA, 2004 (1009951).Google Scholar