Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T13:05:57.123Z Has data issue: false hasContentIssue false

Permanent Photoinduced Refractive-Index Changes for Bragg Gratings in Silicate Glass Waveguides and Fibers

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

In 1978 Kenneth Hill of the Communications Research Centre in Ottawa discovered that intense blue light propagating inside the core of a germanium-doped silicate glass fiber modified the core refractive index sufficiently to form a measurable permanent hologram. Because germanium-doped silica is the material of choice for the core of most optical fiber in use today for optical communications, this “photosensitive” phenomenon has been recognized as having tremendous practical importance. Fiber Bragg gratings in particular form excellent narrow-band optical filters with a multitude of applications: sensors, fiber laser mirrors, wavelength multiplexers (the acronym for wavelength multiplexing and demultiplexing in systems is WDM), and dispersion control devices—to name a few that are already commercially available. The importance of this field can be verified in just about any current issue of journals related to lightwave technology and applications of optics. Fiber Bragg gratings are mentioned everywhere. In fact a recent issue of the Journal of Lightwave Technology is entirely devoted to this topic (and to poling of silica, a field reviewed by W. Margulis in this issue).

Type
New Functionality in Glass
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hill, K.O., Fujii, Y., Johnson, D.C., and Kawasaki, B.S., Appl. Phys Lett. 32 (1978) p. 647.CrossRefGoogle Scholar
2.Institute of Electronic and Electrical Engineering/Optical Society of America, J. Lightwave Technol. 15 (1997).Google Scholar
3.Russell, P.St.J. and Archambault, J.L., in Optical Fiber Sensors, vol. 3, edited by Culshaw, B. and Dakin, J. (Artech House, London, 1996) p. 9.Google Scholar
4.Askins, C.G., Tsai, T.E., Williams, G.M., Putnam, M.A., Bashkansky, M., and Friebele, E.J., Opt. Lett. 17 (1992) p. 833.CrossRefGoogle Scholar
5.Xie, W.X., Niay, P., Bernage, P., Douay, M., Taunay, T., Bayon, J.F., Delevaque, E., and Monerie, M., Opt. Commun. 124 (1996) p. 295.CrossRefGoogle Scholar
6.Lam, D.K.W. and Garside, B.K., Appl. Opt. 20 (1981) p. 440.CrossRefGoogle Scholar
7.Cohen, A.J. and Smith, H.L., J. Phys. Chem. Solids 7 (1958) p. 301.CrossRefGoogle Scholar
8.Meltz, G., Morey, W.W., and Glenn, W.H., Opt. Lett. 14 (1989) p. 823.CrossRefGoogle Scholar
9.Lemaire, P.J., Atkins, R.M., Mizrahi, V., and Reed, W.A., Electron. Lett. 29 (1993) p. 1191.CrossRefGoogle Scholar
10.Garthe, D., Milner, G., and Cai, Y., Electron. Lett. 34 (1998) p. 582.CrossRefGoogle Scholar
11.Bilodeau, F., Johnson, D.C., Thériault, S., Malo, B., Albert, J., and Hill, K.O., IEEE Photon. Technol. Lett. 7 (1995) p. 388.CrossRefGoogle Scholar
12.Thériault, S., Hill, K.O., Bilodeau, F., Johnson, D.C., Albert, J., Drouin, G., and Béliveau, A., Opt. Rev. 4 (1997) p. 145.CrossRefGoogle Scholar
13.Hill, K.O., Bilodeau, F., Malo, B., Kitagawa, T., Thériault, S., Johnson, D.C., and Albert, J., Opt. Lett. 19 (1994) p. 1314.CrossRefGoogle Scholar
14.Morton, P.A., Mizrahi, V., Andrekson, P.A., Tanbun-Ek, T., Logan, R.A., Lemaire, P.J., Coblentz, D.L., Sergent, A.M., Wecht, K.W., and Sciortino, P.F. Jr., IEEE Photon. Technol. Lett. 5 (1993) p. 28.CrossRefGoogle Scholar
15.Hand, D.P. and Russell, P.St.J., Opt. Lett. 15 (1990) p. 102.CrossRefGoogle Scholar
16.Atkins, R.M., Mizrahi, V., and Erdogan, T., Electron. Lett. 29 (1993) p. 385.CrossRefGoogle Scholar
17.Simmons, K.D., LaRochelle, S., Mizrahi, V., Stegeman, G., and Griscom, D.L., Opt. Lett. 16 (1991) p. 141.CrossRefGoogle Scholar
18.Albert, J., Malo, B., Hill, K.O., Bilodeau, F., Johnson, D.C., and Thériault, S., Appl. Phys. Lett. 67 (1995) p. 3529.CrossRefGoogle Scholar
19.Sceats, M.G., Atkins, G.R., and Poole, S.B., Annu. Rev. Mater. Sci. 23 (1993) p. 381.CrossRefGoogle Scholar
20.Limberger, H.G., Fonjallaz, P-Y., Salathé, R.P., and Cochet, F., Appl. Phys. Lett. 68 (1996) p. 3069.CrossRefGoogle Scholar
21.Poumellec, B., Niay, P., Douay, M., and Bayon, J.F., J. Phys. D 29 (1996) p. 1842.Google Scholar
22.Williams, D.L., Ainslie, B.J., Armitage, J.R., Kashyap, R., and Campbell, R., Electron. Lett. 29 (1993) p. 45.CrossRefGoogle Scholar
23.Dong, L., Cruz, J.L., Reekie, L., Xu, M.G., and Payne, D.N., IEEE Photon. Technol. Lett. 7 (1995) p. 1048.CrossRefGoogle Scholar
24.Bilodeau, F., Malo, B., Albert, J., Johnson, D.C., Hill, K.O., Hibino, Y., Abe, M., and Kawachi, M., Opt. Lett. 18 (1993) p. 953.CrossRefGoogle Scholar
25.Albert, J., Malo, B., Bilodeau, F., Johnson, D.C., Hill, K.O., Hibino, Y., and Kawachi, M., Opt. Lett. 19 (1994) p. 387.CrossRefGoogle Scholar
26.Malo, B., Albert, J., Hill, K.O., Bilodeau, F., and Johnson, D.C., Electron. Lett. 30 (1994) p. 442.CrossRefGoogle Scholar
27.Albert, J., Malo, B., Johnson, D.C., Hill, K.O., Brebner, J.L., and Leonelli, R., Opt. Lett. 17 (1992) p. 1652.CrossRefGoogle Scholar
28.Erdogan, T., Mizrahi, V., Lemaire, P.J., and Monroe, D., J. Appl. Phys. 76 (1994) p. 73.CrossRefGoogle Scholar