Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T15:28:29.913Z Has data issue: false hasContentIssue false

Peptide-Enhanced Nucleic Acid Delivery

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Numerous barriers, both extracellular and intracellular, hinder successful and efficient nonviral nucleic acid delivery. Due to their small size and ability to specifically recognize and interact with molecular targets, peptides can be incorporated as modular elements into synthetic nucleic acid delivery systems to overcome many of these barriers. Three classes of peptides that have frequently been integrated as components in nucleic acid delivery systems include cell-penetrating peptides (CPPs), endosomal release peptides, and nuclear localization sequences (NLSs).Various additional classes of peptides show promise for enhancing nucleic acid delivery by targeting cell surface receptors, inhibiting nuclease activity, and directing nucleic acids toward intracellular targets. In addition to a review of the various existing approaches to peptide-enhanced nucleic acid delivery, this article will discuss strategies for the development of new peptides and approaches for the incorporation of these peptides into nucleic acid delivery systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gupta, B., Levchenko, T.S., Torchilin, V.P., Adv. Drug Deliv. Rev. 57 (2005) p. 637Google Scholar
2.Jarver, P. and Langel, U., Drug Discov. Today 9 (2004) p. 395CrossRefGoogle Scholar
3.Lundberg, P. and Langel, U., J. Mol. Recognit. 16 (2003) p. 227Google Scholar
4.Temsamani, J. and Vidal, P., Drug Discov. Today 9 (2004) p. 1012Google Scholar
5.Muratovska, A. and Eccles, M.R., FEBS Lett. 558 (2004) p. 63Google Scholar
6.Derossi, D., Calvet, S., Trembleau, A., Brunissen, A., Chassaing, G., and Prochiantz, A., J. Biol. Chem. 271 (1996) p. 18188CrossRefGoogle Scholar
7.Vives, E., Brodin, P., and Lebleu, B., J. Biol. Chem. 272 (1997) p. 16010Google Scholar
8.Richard, J.P., Melikov, K., Vives, E., Ramos, C., Verbeure, B., Gait, M.J., Chernomordik, L.V., and Lebleu, B., J. Biol. Chem. 278 (2003) p. 585Google Scholar
9.Caron, N.J., Quenneville, S.P., and Tremblay, J.P., Biochem. Biophys. Res. Commun. 319 (2004) p. 12Google Scholar
10.Console, S., Marty, C., Garcia-Echeverria, C., Schwendener, R., and Ballmer-Hofer, K., J. Biol. Chem. 278 (2003) p. 35109Google Scholar
11.Fischer, R., Kohler, K., Fotin-Mleczek, M., and Brock, R., J. Biol. Chem. 279 (2004) p. 12625Google Scholar
12.Potocky, T.B., Menon, A.K., and Gellman, S.H., J. Biol. Chem. 278 (2003) p. 50188Google Scholar
13.Ross, M.F., Filipovska, A., Smith, R.A., Gait, M.J., and Murphy, M.P., Biochem. J. 383 (2004) p. 457CrossRefGoogle Scholar
14.Ziegler, A., Nervi, P., Durrenberger, M., and Seelig, J., Biochemistry 44 (2005) p. 138CrossRefGoogle Scholar
15.Brooks, H., Lebleu, B., and Vives, E., Adv. Drug Deliv. Rev. 57 (2005) p. 559Google Scholar
16.Astriab-Fisher, A., Sergueev, D.S., Fisher, M., Shaw, B.R., and Juliano, R.L., Biochem. Pharmacol. 60 (2000) p. 83CrossRefGoogle Scholar
17.Ignatovich, I.A., Dizhe, E.B., Pavlotskaya, A.V., Akifiev, B.N., Burov, S.V., Orlov, S.V., and Perevozchikov, A.P., J. Biol. Chem. 278 (2003) p. 42625Google Scholar
18.Liu, Z., Li, M., Cui, D., and Fei, J., J. Controlled Release 102 (2005) p. 699CrossRefGoogle Scholar
19.Rudolph, C., Plank, C., Lausier, J., Schillinger, U., Muller, R.H., and Rosenecker, J., J. Biol. Chem. 278 (2003) p. 11411Google Scholar
20.Torchilin, V.P., Levchenko, T.S., Rammohan, R., Volodina, N., Papahadjopoulos-Sternberg, B., and D'Souza, G.G., Proc. Natl. Acad. Sci. USA 100 (2003) p. 1972CrossRefGoogle Scholar
21.Tung, C.H., Mueller, S., and Weissleder, R., Bioorg. Med. Chem. 10 (2002) p. 3609Google Scholar
22.Allinquant, B., Hantraye, P., Mailleux, P., Moya, K., Bouillot, C., and Prochiantz, A., J. Cell Biol. 128 (1995) p. 919Google Scholar
23.Pooga, M., Soomets, U., Hallbrink, M., Valkna, A., Saar, K., Rezaei, K., Kahl, U., Hao, J.X., Xu, X.J., Wiesenfeld-Hallin, Z., Hokfelt, T., Bartfai, T., and Langel, U., Nat. Biotechnol. 16 (1998) p. 857Google Scholar
24.Troy, C.M., Derossi, D., Prochiantz, A., Greene, L.A., and Shelanski, M.L., J. Neurosci. 16 (1996) p. 253Google Scholar
25.Ostenson, C.G., Sandberg-Nordqvist, A.C., Chen, J., Hallbrink, M., Rotin, D., Langel, U., Efendic, S., Biochem. Biophys. Res. Commun. 291 (2002) p. 945CrossRefGoogle Scholar
26.Futaki, S., Ohashi, W., Suzuki, T., Niwa, M., Tanaka, S., Ueda, K., Harashima, H., and Sugiura, Y., Bioconjugate Chem. 12 (2001) p. 1005CrossRefGoogle Scholar
27.Siprashvili, Z., Scholl, F.A., Oliver, S.F., Adams, A., Contag, C.H., Wender, P.A., and Khavari, P.A., Hum. Gene Ther. 14 (2003) p. 1225Google Scholar
28.van Rossenberg, S.M., van Keulen, A.C., Drijfhout, J.W., Vasto, S., Koerten, H.K., Spies, F., van't Noordende, J.M., van Berkel, T.J., and Biessen, E.A., Gene Ther. 11 (2004) p. 457CrossRefGoogle Scholar
29.Boussif, O., Lezoualc'h, F., Zanta, M.A., Mergny, M.D., Scherman, D., Demeneix, B., and Behr, J.P., Proc. Natl. Acad. Sci. USA 92 (1995) p. 7297Google Scholar
30.Pack, D.W., Putnam, D., and Langer, R., Biotechnol. Bioeng. 67 (2000) p. 217Google Scholar
31.Pichon, C., Roufai, M.B., Monsigny, M., and Midoux, P., Nucleic Acids Res. 28 (2000) p. 504Google Scholar
32.Putnam, D., Gentry, C.A., Pack, D.W., and Langer, R., Proc. Natl. Acad. Sci. USA 98 (2001) p. 1200Google Scholar
33.Zabner, J., Fasbender, A.J., Moninger, T., Poellinger, K.A., and Welsh, M.J., J. Biol. Chem. 270 (1995) p. 18997Google Scholar
34.Haensler, J. and Szoka, F.C. Jr., Bioconjugate Chem. 4 (1993) p. 372Google Scholar
35.Parente, R.A., Nadasdi, L., Subbarao, N.K., and Szoka, F.C. Jr., Biochemistry 29 (1990) p. 8713Google Scholar
36.Li, W., Nicol, F., and Szoka, F.C. Jr., Adv. Drug Deliv. Rev. 56 (2004) p. 967Google Scholar
37.Haas, D.H. and Murphy, R.M., J. Pept. Res. 63 (2004) p. 9Google Scholar
38.Lee, H., Jeong, J.H., and Park, T.G., J. Controlled Release 79 (2002) p. 283CrossRefGoogle Scholar
39.Kichler, A., Mechtler, K., Behr, J.P., and Wagner, E., Bioconjugate Chem. 8 (1997) p. 213Google Scholar
40.Subramanian, A., Ma, H., Dahl, K.N., Zhu, J., and Diamond, S.L., J. Gene Med. 4 (2002) p. 75Google Scholar
41.Wagner, E., Plank, C., Zatloukal, K., Cotten, M., and Birnstiel, M.L., Proc. Natl. Acad. Sci. USA 89 (1992) p. 7934Google Scholar
42.Capecchi, M.R., Cell 22 (1980) p. 479Google Scholar
43.Brunner, S., Sauer, T., Carotta, S., Cotten, M., Saltik, M., and Wagner, E., Gene Ther. 7 (2000) p. 401CrossRefGoogle Scholar
44.Cartier, R. and Reszka, R., Gene Ther. 9 (2002) p. 157Google Scholar
45.Escriou, V., Carriere, M., Scherman, D., and Wils, P., Adv. Drug Deliv. Rev. 55 (2003) p. 295Google Scholar
46.Hebert, E., Biol. Cell 95 (2003) p. 59Google Scholar
47.Munkonge, F.M., Dean, D.A., Hillery, E., Griesenbach, U., and Alton, E.W., Adv. Drug Deliv. Rev. 55 (2003) p. 749Google Scholar
48.Nakanishi, M., Akuta, T., Nagoshi, E., Eguchi, A., Mizuguchi, H., and Senda, T., Eur. J. Pharm. Sci. 13 (2001) p. 17CrossRefGoogle Scholar
49.Zanta, M.A., Belguise-Valladier, P., and Behr, J.P., Proc. Natl. Acad. Sci. USA 96 (1999) p. 91Google Scholar
50.Subramanian, A., Ranganathan, P., and Diamond, S.L., Nat. Biotechnol. 17 (1999) p. 873CrossRefGoogle Scholar
51.Nagasaki, T., Myohoji, T., Tachibana, T., Futaki, S., and Tamagaki, S., Bioconjugate Chem. 14 (2003) p. 282CrossRefGoogle Scholar
52.Tanimoto, M., Kamiya, H., Minakawa, N., Matsuda, A., and Harashima, H., Bioconjugate Chem. 14 (2003) p. 1197Google Scholar
53.van der Aa, M.A., Koning, G.A., d'Oliveira, C., Oosting, R.S., Wilschut, K.J., Hennink, W.E., and Crommelin, D.J., J. Gene Med. 7 (2005) p. 208Google Scholar
54.Ludtke, J.J., Zhang, G., Sebestyen, M.G., and Wolff, J.A., J. Cell Sci. 112 (Pt. 12) (1999) p. 2033CrossRefGoogle Scholar
55.Pante, N. and Kann, M., Mol Biol. Cell 13 (2002) p. 425Google Scholar
56.Bremner, K.H., Seymour, L.W., Logan, A., and Read, M.L., Bioconjugate Chem. 15 (2004) p. 152Google Scholar
57.Branden, L.J., Mohamed, A.J., and Smith, C.I., Nat. Biotechnol. 17 (1999) p. 784Google Scholar
58.Chan, C.K. and Jans, D.A., Hum Gene Ther. 10 (1999) p. 1695Google Scholar
59.Chan, C.K. and Jans, D.A., Gene Ther. 8 (2001) p. 166Google Scholar
60.Chan, C.K., Senden, T., Jans, D.A., Gene Ther. 7 (2000) p. 1690Google Scholar
61.Ciolina, C., Byk, G., Blanche, F., Thuillier, V., Scherman, D., and Wils, P., Bioconjugate Chem. 10 (1999) p. 49Google Scholar
62.Collas, P., Husebye, H., and Alestrom, P., Transgenic Res. 5 (1996) p. 451Google Scholar
63.Neves, C., Escriou, V., Byk, G., Scherman, D., and Wils, P., Cell Biol. Toxicol. 15 (1999) p. 193Google Scholar
64.Ritter, W., Plank, C., Lausier, J., Rudolph, C., Zink, D., Reinhardt, D., and Rosenecker, J., J. Mol. Med. 81 (2003) p. 708Google Scholar
65.Schwartz, B., Ivanov, M.A., Pitard, B., Escriou, V., Rangara, R., Byk, G., Wils, P., Crouzet, J., and Scherman, D., Gene Ther. 6 (1999) p. 282Google Scholar
66.Sebestyen, M.G., Ludtke, J.J., Bassik, M.C., Zhang, G., Budker, V., Lukhtanov, E.A., Hagstrom, J.E., and Wolff, J.A., Nat. Biotechnol. 16 (1998) p. 80Google Scholar
67.Jenkins, Y., McEntee, M., Weis, K., and Greene, W.C., J. Cell Biol. 143 (1998) p. 875Google Scholar
68.Zhang, F., Andreassen, P., Fender, P., Geissler, E., Hernandez, J.F., and Chroboczek, J., Gene Ther. 6 (1999) p. 171Google Scholar
69.Carriere, M., Escriou, V., Savarin, A., and Scherman, D., BMC Biotechnol. 3 (2003) p. 14Google Scholar
70.Mislick, K.A. and Baldeschwieler, J.D., Proc. Natl. Acad. Sci. USA 93 (1996) p. 12349Google Scholar
71.Colin, M., Maurice, M., Trugnan, G., Kornprobst, M., Harbottle, R.P., Knight, A., Cooper, R.G., Miller, A.D., Capeau, J., Coutelle, C., and Brahimi-Horn, M.C., Gene Ther. 7 (2000) p. 139CrossRefGoogle Scholar
72.Harbottle, R.P., Cooper, R.G., Hart, S.L., Ladhoff, A., McKay, T., Knight, A.M., Wagner, E., Miller, A.D., and Coutelle, C., Hum. Gene Ther. 9 (1998) p. 1037Google Scholar
73.Pasqualini, R., Koivunen, E., and Ruoslahti, E., Nat. Biotechnol. 15 (1997) p. 542Google Scholar
74.Moffatt, S., Wiehle, S., and Cristiano, R.J., Hum. Gene Ther. 16 (2005) p. 57Google Scholar
75.Writer, M.J., Marshall, B., Pilkington-Miksa, M.A., Barker, S.E., Jacobsen, M., Kritz, A., Bell, P.C., Lester, D.H., Tabor, A.B., Hailes, H.C., Klein, N., and Hart, S.L., J. Drug Target 12 (2004) p. 185CrossRefGoogle Scholar
76.Nicklin, S.A., White, S.J., Watkins, S.J., Hawkins, R.E., and Baker, A.H., Circulation 102 (2000) p. 231Google Scholar
77.Porkka, K., Laakkonen, P., Hoffman, J.A., Bernasconi, M., and Ruoslahti, E., Proc. Natl. Acad. Sci. USA 99 (2002) p. 7444Google Scholar
78.Laakkonen, P., Porkka, K., Hoffman, J.A., and Ruoslahti, E., Nat. Med. 8 (2002) p. 751Google Scholar
79.Smith, P.M., Ross, G.F., Taylor, R.W., Turnbull, D.M., and Lightowlers, R.N., Biochim. Biophys. Acta 1659 (2004) p. 232Google Scholar
80.Seibel, P., Trappe, J., Villani, G., Klopstock, T., Papa, S., and Reichmann, H., Nucleic Acids Res. 23 (1995) p. 10Google Scholar
81.D'Souza, G.G., Rammohan, R., Cheng, S.M., Torchilin, V.P., and Weissig, V., J. Controlled Release 92 (2003) p. 189CrossRefGoogle Scholar
82.Manfredi, G., Fu, J., Ojaimi, J., Sadlock, J.E., Kwong, J.Q., Guy, J., and Schon, E.A., Nat. Genet. 30 (2002) p. 394CrossRefGoogle Scholar
83.Pooga, M., Hallbrink, M., Zorko, M., and Langel, U., FASEB J. 12 (1998) p. 67Google Scholar
84.Morris, M.C., Vidal, P., Chaloin, L., Heitz, F., and Divita, G., Nucleic Acids Res. 25 (1997) p. 2730CrossRefGoogle Scholar
85.Morris, M.C., Chaloin, L., Mery, J., Heitz, F., and Divita, G., Nucleic Acids Res. 27 (1999) p. 3510Google Scholar
86.Maruta, F., Parker, A.L., Fisher, K.D., Murray, P.G., Kerr, D.J., and Seymour, L.W., J. Drug Target 11 (2003) p. 53Google Scholar
87.Mori, T., Curr. Pharm. Des. 10 (2004) p. 2335Google Scholar
88.Sperinde, J.J., Choi, S.J., and Szoka, F.C. Jr., J. Gene Med. 3 (2001) p. 101Google Scholar
89.Morpurgo, M., Kirschner, M., and Radu, A., J. Biochem. Biophys. Methods 52 (2002) p. 31Google Scholar
90.Pinilla, C., Appel, J.R., Borras, E., and Houghten, R.A., Nat. Med. 9 (2003) p. 118Google Scholar
91.Aina, O.H., Sroka, T.C., Chen, M.L., and Lam, K.S., Biopolymers 66 (2002) p. 184Google Scholar
92.Isalan, M., Santori, M.I., Gonzalez, C., and Serrano, L., Nat. Methods 2 (2005) p. 113Google Scholar
93.Neves, C., Byk, G., Scherman, D., and Wils, P., FEBS Lett. 453 (1999) p. 41Google Scholar
94.Zelphati, O., Liang, X., Nguyen, C., Barlow, S., Sheng, S., Shao, Z., and Felgner, P.L., Biotechniques 28 (2000) pp. 304, 312, 316Google Scholar