Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T19:51:56.247Z Has data issue: false hasContentIssue false

Pb-Free Solder: New Materials Considerations for Microelectronics Processing

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

A single printed circuit board includes thousands, sometimes even hundreds of thousands, of solder joints. The failure of even a single solder joint is usually enough to compromise the functionality of an electronic device or system. PbSn solder had been the standard ma te rial for these joints until various regulations around the world began to limit Pb use. SnAgCu and related alloys are quickly replacing PbSn, but much still needs to be understood and controlled. None of the paradigms for understanding the mechanical response of PbSn alloys is applicable to lead-free alloys. Much of the surprising behavior of SnAgCu solder arises from the complex and fascinating nature of its solidification behavior. In this ar ticle, the impact of solidification on the microstruc ture and therefore the mechanical properties of these solder joints will be addressed in the context of microelectronics proc essing. The need for better simulations of SnAgCu solder behavior will also be examined. Notably, modelers will have to account for a variety of new parameter dependencies not previously considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.K.J., Puttlitz, K.A., Stalter, Eds. Handbook of Lead-Free Solder Technology for Microelectronic Assemblies (Marcel Dekker, New York, 2004), and related Internet links: IPC Compliance Web Site, http://leadfree.ipc.org/RoHS_3–2–1–4. asp; EC Environment Policy, Waste Electrical and Electronic Equipment, http://ec.europa.eu/environment/waste/weee_index.htm; U.K. Department of Trade and Industry Web Site, EC Directive on Waste Electrical and Electronic Equipment, www.dti.gov.uk/innovation/sustainability/weee/page30269.html; Grace Compliance Specialist Web Site, www.graspllc.com/China%20RoHS.php/.Google Scholar
2.Moon, K.W. et al., J. Electron. Mater. 29, 1122 (2000).CrossRefGoogle Scholar
3.Clech, J.-P., MicroMater. Nanomater. 3, 144 (2004).Google Scholar
4.Darveaux, R., Banerji, K., Mawer, A., Dody, G., in Ball Grid Array Technology, J.H., Lau, ed. (McGraw-Hill, New York, 1995) pp. 379442.Google Scholar
5.Lehman, L.P. et al., J. Electron. Mater. 33 (12), 1429 (2004).CrossRefGoogle Scholar
6.Telang, A.U., Bieler, T.R., JOM 57, 44 (2005).CrossRefGoogle Scholar
7.Telang, A.U., Bieler, T.R., Choi, S., Subramanian, K.N., J. Mater. Res. 17, 2204 (2002).CrossRefGoogle Scholar
8.Frear, D.R., J. Met. 48, 49 (1996).Google Scholar
9.House, D.G., Vernon, E.V., Br. J. Appl. Phys. 11, 254 (1960).CrossRefGoogle Scholar
10.Rayne, J.A., Chandrasekhar, B.S., Phys. Rev. 120, 1658 (1960).CrossRefGoogle Scholar
11.Subramanian, K.N., Lee, J.G., J. Mater. Sci. Mater. Electron. 15, 235 (2004).CrossRefGoogle Scholar
12.Park, S.B., Dhakal, R., Lehman, L.P., Cotts, E.J., in Proc. ASME InterPACK (San Francisco, CA, 2005).Google Scholar
13.Frear, D.R., Jang, J.W., Lin, J.K., Zhang, C., J. Met. 53, 28 (2001).Google Scholar
14.Henderson, D.W. et al., J. Mater. Res. 19 (6), 1608 (2004).CrossRefGoogle Scholar
15. Special Issue on Lead-Free Solders and Processing Issues in Microelectronics Packaging, J. Electron. Mater. 32, 1359 (2003).CrossRefGoogle Scholar
16.Zeng, K., Tu, K.N., Mater. Sci. Eng. R 38, 55 (2002).CrossRefGoogle Scholar
17.Zribi, A. et al., J. Electron. Mater. 30, 1157 (2001).CrossRefGoogle Scholar
18.Matin, M.A., Coenen, E.W.C., Vellinga, W.P., Geers, M.G.D., Scripta Mater. 53, 927 (2005).CrossRefGoogle Scholar
19.Bieler, T.R. et al., Proc. 56th Electronic Components Technology Conf. (2006) p. 6.Google Scholar
20.Lehman, L.P. et al., Proc. 55th Electronic Components Technology Conf. (2005) p. 674681.Google Scholar
21.Luoa, W.C. et al., Mater. Sci. Eng. A 396, 385 (2005).CrossRefGoogle Scholar
22.Kim, K., Suganuma, K., Kim, J., Hwang, C., J. Met. 56, 39 (2004).Google Scholar
23.Telang, A.U. et al., J. Electron. Mater. 33 (12), 1412 (2004).CrossRefGoogle Scholar
24.Ochoa, F., Deng, X., Chawla, N., J. Electron. Mater. 33 (12), 1596 (2004).CrossRefGoogle Scholar
25.Wu, K.P., Wade, N., Yamada, S., Miyahara, K., Z. Metallkd. 95 (3), 185 (2004).CrossRefGoogle Scholar
26.Xiao, Q., Nguyen, L., Armstrong, W.D, Proc. 54th Electronic Components Technology Conf. (2004) p. 13251332.Google Scholar
27.Ubachs, R.L.J.M., Schreurs, P.J.G., Geers, M.G.D., IEEE Trans. Components Packaging Technologies 27 (4), 635 (2004).CrossRefGoogle Scholar
28.Jadhav, S., Bieler, T.R., Subramanian, K.N., Lucas, J.P., J. Electron. Mater. 30, 1197 (2001).CrossRefGoogle Scholar
29.Choi, S. et al., J. Met. 53, 22 (2001).Google Scholar
30.Telang, A.U., Bieler, T.R., Crimp, M.A., Mater. Sci. Eng. A 421 (1–2), 22 (2006).CrossRefGoogle Scholar
31.Weertman, J., Trans. Am. Inst. Min. Eng. 218, 207 (1960).Google Scholar
32.Mathew, M.D., Hang, Y., Movva, S., Murty, K.L., Metall. Mater. Trans. 01.36A (1), 99 (2005).CrossRefGoogle Scholar
33.Kinyanjui, R., Lehman, L.P., Zavalij, L., Cotts, E., J. Mater. Res. 20, 2914 (2005).CrossRefGoogle Scholar
34.Kim, K.S., Huh, S.H., Suganuma, K., J. Alloys Compd. 352, 226 (2002).CrossRefGoogle Scholar
35.Ochoa, F., Deng, X., Chawla, N., J. Electron. Mater. 33 (12), 1596 (2004).CrossRefGoogle Scholar
36.Wu, K.P., Wade, N., Yamada, S., Miyahara, K., Z. Metallkd. 95 (3), 185 (2004).CrossRefGoogle Scholar
37.Dutta, I., Pan, D., Marks, R.A., Jadhav, S.G., Mater. Sci. Eng. A 410–11, 48 (2005).CrossRefGoogle Scholar
38.Kang, S.K. et al., in Proc. 54th Electronic Components Technology Conf. (2004) p. 661667.Google Scholar
39.Lee, J.G., Subramanian, K.N., Soldering Surf. Mount Technol. 17 (1), 33 (2005).CrossRefGoogle Scholar
40.Kang, S.K. et al., J. Electron. Mater. 35 479 (2006).CrossRefGoogle Scholar
41.Anderson, I.E., Harringa, J.L., J. Electron. Mater. 33, 1485 (2004).CrossRefGoogle Scholar
42.Gong, J.C., Liu, C.Q., Conway, P.P., Silberschmidt, V.V., Mater. Sci. Eng. A 427 (1–2), 60 (2006).CrossRefGoogle Scholar
43.Darveaux, R., Banerji, K., IEEE Trans. Components, Hybrids, Manuf. Technol., 15 (6), 1013 (December 1992)CrossRefGoogle Scholar
44.Wei, Y. et al., J. Electron. Packaging 126 367 (2004).CrossRefGoogle Scholar
45.Gong, J., Liu, C., Conway, P.P., Silberschmidt, V.V., Comput. Mater. Sci. (2007) in press, www.sciencedirect.com.Google Scholar
46.Rhee, H., Subramanian, K.N., Soldering Surf. Mount Technol., 18 (1), 19 (2006).CrossRefGoogle Scholar
47.Kanchanomai, C., Miyashita, Y., Mutoh, Y., Mannan, S.L., Mater. Sci. Eng. A 345 90 (2003).CrossRefGoogle Scholar
48.Terashima, S., Takahama, K., Nozaki, M., Tanaka, M., Mater. Trans. JIM 45 (4), 1383 (2004).CrossRefGoogle Scholar