Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T14:00:23.224Z Has data issue: false hasContentIssue false

Partially Disordered Inorganic Materials

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

It is widely recognized that the presence of defects in crystals and other solid materials can have a profound effect upon their chemical and physical properties and, consequently, that defects have a major impact on the practical utility of many technological materials. The presence of defects in a crystalline material implies the presence of disorder, and the extent of such disorder can range from very minor, such as the occurrence of Schottky defects in a crystal of sodium chloride, to maximum disorder, as in an amorphous material. The focus of this overview is on systems that are partially disordered, spanning the range between—but not including—sodium chloride and an amorphous material. Even within this range, the aim is not to be comprehensive, since for space reasons we have restricted our coverage to inorganic materials and hybrid inorganic-organic systems. The choice of this topic stems from both its fundamental and practical importance; it is also a very timely topic. For example, there is a great deal of current interest in complex, partially ordered materials such as the surfactant-mediated mesoporous silicas, biominerals, and hybrid organic-inorganic composites. Research on such materials has presented challenges that cannot easily be addressed by characterization tools that have been developed for well-ordered materials. The same situation is found in other areas such as carbons (including nanotubes) and glassy metal oxides.

Type
Technical Features
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.von Helmolt, R., Holzapfel, B., Schultz, L., and Samwer, K., Phys. Rev. Lett. 71 (1993) p. 2331; K. Chahara, T. Ohno, M. Kasai, and Y. Kozono, Appl. Phys. Lett. 63 (1993) p. 1990; M. McCormack, S. Jin, T. Tiefel, R.M. Fleming, J.M. Phillips, and R. Ramesh, Appl. Phys. Lett. 64 (1994) p. 3045; R. Mahesh, R. Mahendiran, A.K. Raychaudhuri, and C.N.R. Rao, J. Solid State Chem. 114 (1995) p. 297; A. Urishibara, Y. Morimoto, Y.T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B 51 (1995) p. 14103.CrossRefGoogle Scholar
2.Jonker, G.H. and van Santen, J.H., Physica 16 (1950) p. 337; J.H. van Santen and G.H. Jonker, Physica p. 599.CrossRefGoogle Scholar
3.Zener, C., Phys. Rev. 82 (1951) p. 403.CrossRefGoogle Scholar
4.Rao, C.N.R. and Cheetham, A.K., Science 276 (1997) p. 911.CrossRefGoogle Scholar
5.Attfield, J.P., McAllister, J.P., and Kharlanov, A.L., Nature 394 (1998) p. 157.CrossRefGoogle Scholar
6.van Roosmalen, J.A.M., Cordfunke, E.H.P., Helmholdt, R.B., and Zandbergen, H.W., J. Solid State Chem. 110 (1994) p. 100; J.A.M. van Roosmalen and E.H.P. Cordfunke, J. Solid State Chem. p. 109; M. Hervieu, R. Mahesh, N. Rangavittal, and C.N.R. Rao, Eur. J. Solid State Inorg. Chem. 32 (1995) p. 79.CrossRefGoogle Scholar
7.Mahesh, R., Kannan, K.R., and Rao, C.N.R., J. Solid State Chem. 114 (1995) p. 294.CrossRefGoogle Scholar
8.Meier, W.M., Olsen, D.H., and Baerlocher, C., Atlas of Zeolite Structure Types (Elsevier, London, 1996).Google Scholar
9.Freyhardt, C.C., Tsapatsis, M., Lobo, R.F., Balkus, K.J., and Davis, M.E., Nature 381 (1996) p. 295.CrossRefGoogle Scholar
10.Camblor, M.A., Diaz-Cabanas, M-J., Perez-Pariente, J., Teat, S.J., Clegg, W., Shannon, I., Lightfoot, P., Wright, P.A., and Morris, R.E., Angew. Chem. 37 (1998) p. 2122.3.0.CO;2-6>CrossRefGoogle Scholar
11.Gaffney, T.R., Curr. Opin. Solid State Mater. Sci. 1 (1996) p. 69.CrossRefGoogle Scholar
12.Taramasso, T., Perego, G., and Notari, B., U.S. Patent No. 4,410,501 (1983).Google Scholar
13.Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., and Beck, J.S., Nature 359 (1992) p. 710.CrossRefGoogle Scholar
14.Fyfe, C.A., Mueller, K.T., and Kokotailo, G.T., in NMR Techniques in Catalysis, edited by Bell, A.T. and Pines, A. (Marcell Decker, New York, 1994) p. 11.Google Scholar
15.Treacy, M.M.J., Vaughan, D.E.W., Strohmaier, K.G., and Newsam, J.M., Proc. R. Soc. London, Ser. A 452 (1996) p. 813.Google Scholar
16.Salvador, P.A., Mason, T.O., Hagerman, M.E., and Poeppelmeier, K.R., in Chemistry of Advanced Materials: An Overview, edited by Interrante, L.V. and Hampden-Smith, M.J. (Wiley-VCH, 1998) p. 449.Google Scholar
17.Ohtsuka, K., Chem. Mater. 9 (1997) p. 2039; A. Corma, Chem. Rev. 97 (1997) p. 2373.CrossRefGoogle Scholar
18.Newman, S.P. and Jones, W., New J. Chem. 22 (1997) p. 105.CrossRefGoogle Scholar
19.Clearfield, A., Alberti, G., and Costantino, U., in Solid State Supramolecular Chemistry: Zeolites and Layered Solids, vol. 7, edited by Alberti, G. and Bein, T. (Pergammon Press, New York, 1996).Google Scholar
20.Koksbang, R., Olsen, I.I., and Shackle, D., Solid State Ionics 69 (1994) p. 320.CrossRefGoogle Scholar
21.Granqvist, C.G., Appl. Phys. A 57 (1993) p. 19.CrossRefGoogle Scholar
22.Zhao, D.Y., Yang, P.D., Huo, Q.S., Chmelka, B.F., and Stucky, G.D., Curr. Opin. Solid State Mater. Sci. 3 (1998) p. 111.CrossRefGoogle Scholar
23.Zhao, D.Y., Feng, J.L., Huo, Q.S., Melosh, N., Fredrickson, G.H., Chmelka, B.F., and Stucky, G.D., Science 279 (1998) p. 548; P. Yang, D. Zhao, D.I. Margolese, B.F. Chmelka, and G.D. Stucky, Nature 396 (1998) p. 152; P. Yang, T. Deng, D. Zhao, P. Feng, D. Pine, B.F. Chmelka, G. M. Whitesides, and G.D. Stucky, Science 282 (1998) p. 2244.CrossRefGoogle Scholar
24.Huo, Q., Margolesi, D.I., Ciesla, U., Feng, P., Gier, T.E., Sieger, P., Leon, R., Petroff, P.M., Schuth, F., and Stucky, G.D., Nature 368 (1994) p. 317.CrossRefGoogle Scholar
25.Tanev, P.T. and Pinnavaia, T., Science 267 (1995) p. 865.CrossRefGoogle Scholar
26.Kim, S.S., Zhang, W., Pinnavaia, T.J., Science 282 (1998) p. 1302.CrossRefGoogle Scholar
27.Attard, G.S., Glyde, J.C., and Göltner, C.G., Nature 378 (1995) p. 366.CrossRefGoogle Scholar
28.Göltner, C.G., Henke, S., Weissenberger, M.C., Antonietti, M., Agnew. Chem. Int. Ed. 37 (1998) p. 613.3.0.CO;2-G>CrossRefGoogle Scholar
29.Templin, M., Franck, A., DuChesne, A., Leist, H., Zgang, Y., Ulrich, R., Schädler, U., and Weisner, H., Science 278 (1997) p. 1795.CrossRefGoogle Scholar
30.Schmidt-Winkel, P., Lukens, W.W. Jr., Zhao, D., Yang, P., Chmelka, B.F., Stucky, G.D., J. Am. Chem. Soc. 121 (1999) p. 254.CrossRefGoogle Scholar
31.Wong, K.K.W. and Mann, S., Curr. Opin. Coll. I. Sci. 3 (1998) p. 63.CrossRefGoogle Scholar
32.Fritz, M., Belcher, A.M., Rndmacher, M., Walters, D.A., Hansma, P.K., Stucky, G.D., Morse, D.E., and Mann, S., Nature 371 (1994) p. 49.CrossRefGoogle Scholar
33.Shimizu, K., Cha, J., Stucky, G.D., and Morse, D.E., Proc. Nat. Acad. Sci. U.S.A. 95 (1998) p. 6234 and references therein.CrossRefGoogle Scholar
34.Armour, J.N., in Separation Technology, edited by Vansant, E.F. (Elsevier, Amsterdam, 1994).Google Scholar
35.Foley, H.C., Microporous Mater. 4 (1995) p. 407.CrossRefGoogle Scholar
36.Kane, M.S., Goellner, J.F., Foley, H.C., DiFrancesco, R., Billinge, S.J., and Allard, L.F., Chem. Mater. 8 (1996) p. 2159 and references therein.CrossRefGoogle Scholar
37.Foley, H.C., Lafyatis, D.S., Mariwala, R.K., Sonnischen, G., and Brake, L.D., Chem. Eng. Sci. 49 (1995) p. 4771.CrossRefGoogle Scholar
38.Lafyatis, D.S. and Foley, H.C., Chem. Eng. Sci. 45 (1990) p. 2567.CrossRefGoogle Scholar