Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T21:10:49.713Z Has data issue: false hasContentIssue false

Organic Magnets

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

The notion of organic molecular materials showing metallic properties, such as electric conductivity or ferromagnetism, started several decades ago as a mere dream of some members of the chemical community. The goal was to create an assembly of organic molecules or macromolecules containing only light elements (C, H, N, O, S, etc.) and yet possessing the electron/hole mobility or spin alignment that is inherent in typical metals or their oxides and different from the isolated molecular materials. Organic molecular conductors initially were developed during the 1960s, but the first examples of organic molecular magnets took several more decades to be discovered, owing to the more subtle and complex structural and electronic aspects of these materials. The flurry of activity in this field can be traced to the widely held belief that even the most sophisticated properties can be rationally designed by a systematic modification of organic molecular structures. This motivation was further fueled by increased synthetic capabilities, especially for obtaining large organic molecules with suitable structures and topologies, and also by the spectacular progress of supramolecular chemistry for materials development witnessed in recent years. Also noteworthy is the pioneering work performed in the 1960s by several physical organic chemists who unraveled different ways of aligning spins within open-shell molecules (i.e., triplet diradicals, carbenes, etc.), working against nature's tendency to align them in an antiparallel manner. Magnetic interactions between unpaired electrons, located on the singly occupied molecular orbitals (SOMOs) of di- and polyradicals, or between the adjacent open-shell molecules in crystals, are a crucial issue in this evolving field. Thus, depending upon the symmetry, degeneracy,and topological characteristics of SOMOs and also on the mode of arrangement of the molecules in a crystal, the resulting interaction can align the neighboring spins parallel or antiparallel (see the introductory article by Miller and Epstein in this issue of MRS Bulletin).

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.McConnell, H.M., in Proc. R.A. Welch Found. Chem. Res., Vol. 11 (1967) p. 144.Google Scholar
2.McConnell, H.M., J. Chem. Phys. 39 (1963) p. 1910.CrossRefGoogle Scholar
3.Izuoka, A., Murata, S., Sugawara, T., and Iwamura, H., J. Am. Chem. Soc. 107 (1985) p. 1786; 109 (1987) p. 2631.CrossRefGoogle Scholar
4. Recently it was pointed out that a factor other than this mechanism might also be taken into account for the experimentally observed couplings for these isomers: Deumal, M., Novoa, J.J., Beapark, M.J., Celani, P., Olivucci, M., and Robb, M.A., J. Phys. Chem. A 102 (1998) p. 8404.CrossRefGoogle Scholar
5.Forrester, A.R., Hay, J.M., and Thompson, R.H., Organic Chemistry of Stable Free Radicals (Academic Press, London, 1968); G.D. Mendenhall, D. Griller, and K.U. Ingold, Chem. Br. 10 (1975) p. 284; D. Griller and K.U. Ingold, Acc. Chem. Res. 9 (1976) p. 13 and references therein.Google Scholar
6.Ballester, M., Adv. Phys. Org. Chem. 25 (1989) p. 267; O. Armet, J. Veciana, C. Rovira, J. Riera, J. Castañer, E. Molins, J. Rius, C. Miravitlles, S. Olivella, and J. Brichfeus, J. Phys. Chem. 91 (1987) p. 5608.Google Scholar
7. For a compendium of the most relevant characteristics of magnetic materials based on different organic compounds, see Lathi, P.M., ed., Magnetic Properties of Organic Materials (Marcel Dekker, New York, 1999).Google Scholar
8.Kitaigorodskii, A.I., Molecular Crystals and Molecules (Academic Press, London, 1973).Google Scholar
9.Deumal, M., Cirujeda, J., Veciana, J., and Novoa, J.J., in Supramolecular Engineering of Synthetic Metallic Materials: Conductors and Magnets, NATO ASI Series C, Vol. 518, edited by Veciana, J., Rovira, C., and Amabilino, D.B. (Kluwer Academic Publishers, 1998) p. 105; M. Deumal, J. Cirujeda, J. Veciana, and J.J. Novoa, Chem.— Eur. J. 5 (1999) p. 1617.Google Scholar
10.Tamura, M., Nakazawa, Y., Shiomi, D., Nozawa, K., Hosokoshi, Y., Ishikawa, M., Takahashi, M., and Kinoshita, M., Chem. Phys. Lett. 186 (1991) p. 401; Y. Nakazawa, M. Tamura, M. Shirakawa, D. Shiomi, M. Kinoshita, and M. Ishikawa, Phys. Rev. B 46 (1992) p. 8906.CrossRefGoogle Scholar
11.Blundell, S.J., Pattenden, P.A., Valladares, R.M., Pratt, F.L., Sugano, T., and Hayes, , Solid State Commun. 92 (1994) p. 569; T. Sugawara, M.M. Matsushita, A. Izuoka, N. Wada, N. Takeda, and M. Ishikawa, J. Chem. Soc., Chem. Commun. (1994) p. 1723; J. Cirujeda, M. Mas, E. Molins, F. Lanfranc de Panthou, J. Laugier, J.G. Park, C. Paulsen, P. Rey, C. Rovira, and J. Veciana, J. Chem. Soc., Chem. Commun. (1995) p. 709; A. Caneschi, F. Ferraro, D. Gatteschi, A. Le Lirzin, M.A. Novak, E. Rentschler, and R. Sessoli, Adv. Mater. 7 (1995) p. 476; S.I. Nakatsuji, M. Saiga, N. Haga, A. Naito, T. Hirayama, M. Nakagawa, Y. Oda, H. Anzai, K. Suzuki, T. Enoki, M. Mito, and K. Takeda, New J. Chem. 22 (1998) p. 275.CrossRefGoogle Scholar
12.Hernàndez, E., Mas, M., Molins, E., Rovira, C., and Veciana, J., Angew. Chem., Int. Ed. Engl. 32 (1993) p. 882; J. Cirujeda, E. Hernàndez-Gasio, C. Rovira, J.-L. Stanger, P. Turek, and J. Veciana, J. Mater. Chem. 5 (1995) p. 243; J. Cirujeda, L.E. Ochando, J.M. Amigó, C. Rovira, J. Rius, and J. Veciana, Angew. Chem., Int. Ed. Engl. 34 (1995) p. 55; J. Veciana, J. Cirujeda, C. Rovira, E. Molins, and J.J. Novoa, J. Phys. I France 6 (1996) p. 1967.CrossRefGoogle Scholar
13.Nogami, T., Tomioka, K., Ishida, T., Yoshikawa, H., Yasui, M., Iwasaki, F., Iwamura, H., Takeda, N., and Ishikawa, M., Chem. Lett. (1994) p. 29; K. Togashi, R. Imachi, K. Tomioka, H. Tsuboi, T. Ishida, T. Nogami, N. Takeda, and M. Ishikawa, Bull. Chem. Soc. Jpn. 69 (1996) p. 2821 and references cited therein.Google Scholar
14.Chiarelli, R., Novak, A., Rassat, A., and Tholence, J.L., Nature 363 (1993) p. 147.CrossRefGoogle Scholar
15. For a review listing all nitroxide-based magnets, see Amabilino, D.B. and Veciana, J., in MagnetoScience: Molecules to Materials, Vol. 1, edited by Miller, J. and Drillon, M. (Wiley-VCH, Weinheim, 2000).Google Scholar
16.Rassat, A. and Chiarelli, R., in Magnetic Molecular Materials, NATO ASI Series E, Vol. 198, edited by Gatteschi, D., Kahn, O., Miller, J.S., and Palacio, F. (Kluwer Academic Publishers, Dordrecht, 1991) p. 191; R. Chiarelli, A. Rassat, Y. Dromzee, Y. Jeannin, M.A. Novak, and J.L. Tholence, Phys. Scr., T 49B (1993) p. 706.CrossRefGoogle Scholar
17.Zheludev, A., Chiarelli, R., Delley, B., Gillon, B., Rassat, A., Ressouche, E., and Schweizer, J., J. Magn. Magn. Mater. 140–144 (1995) p. 1439.CrossRefGoogle Scholar
18.Fluekiger, P., Weber, J., Chiarelli, R., Rassat, A., and Ellinger, Y., Int. J. Quantum Chem. 45 (1993) p. 649.CrossRefGoogle Scholar
19.Allemand, P.-M., Khemani, K.C., Koch, A., Wudl, F., Holczer, K., Donovan, S., Grüner, G., and Thompson, J.D., Science 253 (1991) p. 301.CrossRefGoogle Scholar
20.Arcon, C., Cevc, P., Omerzu, A., and Blinc, R., Phys. Rev. Lett. 80 (1998) p. 1529.CrossRefGoogle Scholar
21.Kobayashi, T.C., Takiguchi, M., Hong, C.U., Maya, K., Kajiwara, A., Harada, A., and Kamachi, M., J. Magn. Magn. Mater. 140–144 (1995) p. 1447.CrossRefGoogle Scholar
22.Sugano, T., Tamura, M., Kinoshita, M., Sakai, Y., and Ohashi, Y., Chem. Phys. Lett. 200 (1992) p. 235; Y. Pei, O. Kahn, L. Abersold, L. Ouahab, F. Lebarre, L. Pardi, and J.L. Tholence, Adv. Mater. 6 (1994) p. 681.CrossRefGoogle Scholar
23.Banister, A.J., Bricklebank, N., Lavender, I., Rawson, J.M., Gregory, C.I., Tanner, B.K., Clegg, W., Elsegood, M.R.J., and Palacio, F., Angew. Chem., Int. Ed. Engl. 35 (1996) p. 2433; F. Palacio, G. Antorrena, R. Castro, R. Burriel, J.M. Rawson, J.N.B. Smith, N. Bricklebank, J.J. Novoa, and C. Ritter, Phys. Rev. Lett. 79 (1997) p. 2336.CrossRefGoogle Scholar
24.Platz, M.S., in Diradicals, edited by Borden, W.T. (Wiley Interscience, New York, 1982) p. 195; A.E. Chichibabain, Ber. 40 (1907) p. 1810; J. Thiele and H. Balhorn, Chem. Ber. 37 (1904) p. 1463; W. Schlenk and M. Braun, Ber. 48 (1915) p. 661.Google Scholar
25. For reviews discussing high-spin molecular approaches to organic magnetic materials, see Miller, J.S., Epstein, A.J., and Reiff, W.M., Chem. Rev. 88 (1988) p. 201; H. Iwamura, Adv. Phys. Org. Chem. 26 (1990) p. 179; D.A. Dougherty, Acc. Chem. Res. 24 (1991) p. 88; H. Iwamura and N. Koga, Acc. Chem. Res. 26 (1993) p. 346; H. Kurreck, Angew. Chem., Int. Ed. Engl. 32 (1993) p. 1409; A. Rajca, Chem. Rev. 94 (1994) p. 871.CrossRefGoogle Scholar
26.Borden, W.T., in Diradicals, edited by Borden, W.T. (Wiley Interscience, New York, 1982) p. 1.Google Scholar
27.Trozzolo, A.M., Murray, R.W., Smolinsky, G., Yager, W.A., and Wasserman, E., J. Am. Chem. Soc. 85 (1963) p. 2526; K. Itoh, Chem. Phys. Lett. 1 (1967) p. 235; E. Wasserman, R.W. Murray, W.A. Yager, A.M. Trozzolo, and G. Smolinski, J. Am. Chem. Soc. 89 (1967) p. 5076.CrossRefGoogle Scholar
28.Teki, Y., Takui, T., Itoh, K., Iwamura, H., and Kobayashi, K., J. Am. Chem. Soc. 105 (1983) p. 3722; T. Sugawara, S. Bandow, K. Kimura, H. Iwamura, and K. Itoh, J. Am. Chem. Soc. 106 (1984) p. 6449; Y. Teki, T. Takui, H. Yagi, K. Itoh, and H. Iwamura, J. Chem. Phys. 83 (1985) p. 539; T. Sugawara, S. Bandow, K. Kimura, and H. Iwamura, J. Am. Chem. Soc. 108 (1986) p. 368; Y. Teki, T. Takui, K. Itoh, H. Iwamura, and K. Kobayashi, J. Am. Chem. Soc. 108 (1986) p. 2147; I. Fujita, Y. Teki, T. Takui, T. Kinoshita, K. Itoh, F. Miko, Y. Sawaki, H. Iwamura, A. Izuoka, and T. Sugawara, J. Am. Chem. Soc. 112 (1990) p. 4074.CrossRefGoogle Scholar
29.Kitaigorodskii, A.I., Molecular Crystals and Molecules, Chapters 13, 14, and 31 (Academic Press, London, 1973).Google Scholar
30.Ishida, T., Inoue, K., Koga, N., Nakamura, N., and Iwamura, H., in Electrical, Optical, and Magnetic Properties of Organic Solid State Materials, edited by Chiang, L.Y., Garito, A.F., and Sandman, D.J. (Mater. Res. Soc. Symp. Proc. 247, Pittsburgh, 1992) p. 407.Google Scholar
31.Mataga, N., Theor. Chim. Acta 10 (1968) p. 372.CrossRefGoogle Scholar
32.Matsuda, K., Nakamura, N., Takahashi, K., Inoue, K., Koga, N., and Iwamura, H., J. Am. Chem. Soc. 117 (1995) p. 5550; K. Matsuda, N. Nakamura, K. Oinoue, N. Koga, and H. Iwamura, Bull. Chem. Soc. Jpn. 69 (1996) p. 1483.CrossRefGoogle Scholar
33.Rajca, A., Wongsrirantanakul, J., Rajca, S., and Cerny, R., Angew. Chem., Int. Ed. Engl. 37 (1998) p. 1229.3.0.CO;2-#>CrossRefGoogle Scholar
34.Sedó, J., Ventosa, N., Ruiz-Molina, D., Mas, M., Molins, E., Rovira, C., and Veciana, J., Angew. Chem., Int. Ed. Engl. 37 (1998) p. 330; N. Ventosa, D. Ruiz-Molina, J. Sedó, C. Rovira, X. Tomás, J.-J. André, A. Bieber, and J. Veciana, Chem. Eur. J. 5 (1999) p. 3533.3.0.CO;2-0>CrossRefGoogle Scholar
35.Tomioka, H., Hattori, M., Hirai, K., Sato, K., Shiomi, D., Takui, T., and Itoh, K., J. Am. Chem. Soc. 120 (1998) p. 1106.CrossRefGoogle Scholar
36.Calder, A., Forrester, A.R., James, P.G., and Luckhurst, G.R., J. Am. Chem. Soc. 91 (1969) p. 3724; K. Mukai, H. Nagai, and K. Ishizu, Bull. Chem. Soc. Jpn. 48 (1975) p. 2381; T. Ishida and H. Iwamura, J. Am. Chem. Soc. 113 (1991) p. 4238; F. Kanno, K. Inoue, N. Koga, and H. Iwamura, J. Phys. Chem. 97 (1993) p. 13267.CrossRefGoogle Scholar
37.Stickley, K.R. and Blackstock, S.C., J. Am. Chem. Soc. 116 (1994) p. 11576.CrossRefGoogle Scholar
38.Murray, M.A., Kaszynski, P., Kasisaki, D.A., Change, W.-H., and Dougherty, D.A., J. Am. Chem. Soc. 116 (1994) p. 8152.CrossRefGoogle Scholar
39.Sano, Y., Tanaka, M., Koga, N., Matsuda, K., Iwamura, H., Rabu, P., and Drillon, M., J. Am. Chem. Soc. 119 (1997) p. 8246; S. Karasawa, Y. Sano, T. Akita, N. Koga, T. Itoh, H. Iwamura, P. Rabu, and M. Drillon, J. Am. Chem. Soc. 120 (1998) p. 10080.CrossRefGoogle Scholar
40.Inoue, K. and Iwamura, H., J. Am. Chem. Soc. 116 (1994), p. 3173; H. Iwamura, K. Inoue, and T. Hayamizu, Pure Appl. Chem. 68 (1996) p. 243; D.C. Oniciu, K. Matsuda, and H. Iwamura, J. Chem. Soc., Perkin Trans. 2 (1996) p. 907; H. Iwamura, K. Inoue, and N. Koga, New J. Chem. 22 (1998) p. 201; A.S. Markosyan, T. Hayamizu, H. Iwamura, and K. Initroxideue, J. Phys.: Condens. Matter 10 (1998) p. 2323.CrossRefGoogle Scholar
41.Matsuda, K. and Irie, M., Chem. Lett. (2000) p. 16; Tetrahedron Lett. 41 (2000) p. 2577; J. Am. Chem. Soc. 122 (2000) in press.CrossRefGoogle Scholar
42.Fujita, W. and Awaga, K., Science 286 (1999) p. 261.CrossRefGoogle Scholar