Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T13:34:36.247Z Has data issue: false hasContentIssue false

On the Nature of Grain Boundaries in Nanocrystalline Diamond

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The low-pressure synthesis of rather pure nanocrystalline diamond films from fullerene precursors suggests that for a small enough grain size the diamond structure may be energetically preferred over graphite. Because of the small grain size of typically about 15 nm in these films, a significant fraction of the carbon atoms is situated in the grain boundaries (GBs). The surprisingly high wear resistance of these films even after the substrate is removed and their high corrosion resistance suggest that the grains are strongly bonded. Grain-boundary carbon is also believed to be responsible for the absorption and scattering of light in these films, for their electrical conductivity, and for their electron-emission properties. In spite of all these indications of a critical role played by GB carbon in achieving the remarkable properties of nanocrystalline diamond films, to date the atomic structures of the GBs are essentially not known.

It is well-known that the electronic and optical properties of polycrystalline silicon films are significantly affected by the presence of GBs. For example GBs can provide active sites for the recombination of electron-hole pairs in photovoltaic applications. Also, in electronic devices such as thin-film transistors, GBs are known to play an important role. Because of silicon's strong energetic preference for sp3 hybridization over other electronic configurations, the structural disorder in silicon GBs is accommodated by a distortion of the tetrahedral nearestneighbor bonds and in the extreme by the creation of dangling bonds—that is, of three-coordinated Si atoms each having one unsaturated, bound electron in an otherwise more or less tetrahedrally coordinated environment.

Type
Diamond Films: Recent Developments
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gruen, D.M., Liu, S., Krauss, A.R., Luo, J., and Pan, X., J. Appl. Phys. 75 (1994) p. 1758; Appl. Phys. Lett. 64 (1994) p. 1502.CrossRefGoogle Scholar
2.Nuth, J.A., Nature 329 (1987) p. 589.CrossRefGoogle Scholar
3.Csencsits, R., Zuiker, C.D., Gruen, D.M., and Krauss, A.R., Solid State Phen. 51–52 (1996) p. 261.CrossRefGoogle Scholar
4.Erdemir, A., Bindal, C., Fenske, G.R., Zuiker, C., Krauss, A.R., and Gruen, D.M., Diamond Rel. Mater. 5 (1996) p. 923.CrossRefGoogle Scholar
5.Gruen, D.M., Krauss, A.R., and Auciello, O. (private communication).Google Scholar
6.Krauss, A.R., Gruen, D.M., Zhou, D., McCauley, T.G., Qin, L.C., Corrigan, T., Auciello, O., and Chang, R.P.H., in Materials Issues in Vacuum Microelectronics, edited by Zu, W., Pan, L.S., Felter, T.E., and Holland, C. (Mater. Res. Soc. Symp. Proc. 509, Pittsburgh, 1998).Google Scholar
7. For example, see papers in Polycrystalline Semiconductors, Proceedings in Physics, edit by Möller, H-J., Strunk, H.P., and Werner, J.H., vol. 35 (Springer, Berlin, 1989); Polycrystalline Semiconductors II, Proceedings in Physics, edited by J.H. Werner and H.P. Strunk, vol. 54 (Springer, Berlin, 1991).CrossRefGoogle Scholar
8.Li, F. and Lannin, J.S., Phys. Rev. Lett. 65 (1990) p. 1905.CrossRefGoogle Scholar
9.Huang, M.Z. and Ching, W.Y., Phys. Rev. B 49 (1994) p. 4987.CrossRefGoogle Scholar
10.Tersoff, J., Phys. Rev. Lett. 61 (1988) p. 2879.CrossRefGoogle Scholar
11.Tersoff, J., Phys. Rev. B 38 (1988) p. 9902.CrossRefGoogle Scholar
12.Keblinski, P., Wolf, D., Phillpot, S.R., and Gleiter, H., J. Mater. Res. 13 (1998) p. 2077.CrossRefGoogle Scholar
13.Stillinger, F.H. and Weber, T.A., Phys. Rev. B 31 (1985) p. 5262.CrossRefGoogle Scholar
14.Cleri, F., Keblinski, P., Colombo, L., Phillpot, S.R., and Wolf, D., Phys. Rev. B 57 (1998) p. 6247.CrossRefGoogle Scholar
15. For example, see Wild, C., Koidl, P., Müller-Sebert, M., Walcher, H., Kohl, R., Heroes, N., Locher, R., Samlenski, R., and Brenn, R., Diamond Rel. Mater. 2 (1993) p. 158.CrossRefGoogle Scholar
16.Csencsits, R., Gruen, D.M., Krauss, A.R., and Zuiker, C., in Polystalline Thin Films: Structure Texture, Properties and Applications II, edited by Frost, H.J., Parker, M.A., Ross, C.A., and Holm, E.A. (Mater. Res. Soc. Symp. Proc. 403, Pittsburgh, 1996) p. 291.Google Scholar
17.Keblinski, P., Phillpot, S.R., Wolf, D., and Gleiter, H., Acta Mater. 45 (1997) p. 987.CrossRefGoogle Scholar
18.Keblinski, P., Phillpot, S.R., Wolf, D., and Gleiter, H., Phys. Rev. Lett. 77 (1996) p. 2965; J. Am. Ceram. Soc. 80 (1997) p. 717.CrossRefGoogle Scholar
19.Rosenhain, W. and Humfrey, J.C.W., J. Iron Steel Inst. 87 (1913) p. 219; Rosenhain, W. and Ewen, D., J. Inst. Met. 10 (1913) p. 119.Google Scholar
20.Cahn, R.W., Nature 390 (1997) p. 344.CrossRefGoogle Scholar
21.Wolf, D. and Phillpot, S.R., Mater. Sci. Eng. A 107 (1989) p. 3.CrossRefGoogle Scholar
22.Wolf, D., J. Phys. (Paris) 46 Colloque (1985) C4, p. 197; D. Wolf and S. Yip, eds., Materials Interfaces, Atomic-Level Structure and Properties, Chapter 1 (Chapman & Hall, New York, 1992) p. 1.Google Scholar
23.Hornstra, J., Physica 25 (1959) p. 409; J. Hornstra, Physic 26 (1960) p. 198; Bourret, A. and Bacman, J.J., Trans. Jpn. Inst. Met. Suppl. 27 (1986) p. 125; Kohyama, M., Yamamoto, R., Ebata, Y., and Kinoshita, M., J. Phys. C 21 (1988) p. 3205.CrossRefGoogle Scholar
24. For a review, see Pate, B.B., Surf. Sci. 165 (1986) p. 83.CrossRefGoogle Scholar
25.Cleri, F., Keblinski, P., Colombo, L., Wolf, D., and Phillpot, S.R. (unpublished).Google Scholar