Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T05:16:31.507Z Has data issue: false hasContentIssue false

Observing and measuring strain in nanostructures and devices with transmission electron microscopy

Published online by Cambridge University Press:  12 February 2014

Martin J. Hÿtch
Affiliation:
CEMES-CNRS, Toulouse; [email protected]
Andrew M. Minor
Affiliation:
University of California, Berkeley; [email protected]
Get access

Abstract

The evolution of elastic strain engineering in nanostructures and devices requires characterization tools that can be used to not only observe but also quantify the actual strain in a sample, whether this strain is intrinsic or applied. Strain contrast in crystalline samples has always been one of the primary contrast mechanisms used for imaging the microstructure of a material in a transmission electron microscope (TEM). In this regard, TEM is a particularly powerful tool due to its ability to spatially resolve strain information with high precision and spatial resolution. This article reviews the techniques currently available for directly measuring strain in the TEM. Examples are given for measuring strain in semiconductor devices using imaging, diffraction, and holographic techniques. For strain measurement during in situ mechanical testing, two general methods are presented: the conversion of displacement from an actuation device or the direct measurement of strain using image features during deformation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Thomson, S.E., Armstrong, M., Auth, C., Alavi, M., Buehler, M.et al. IEEE Trans. Electron Devices 51, 1790 (2004).Google Scholar
Nye, J.F., Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, Oxford, 1985).Google Scholar
Jones, P.M., Rackham, G.M., Steeds, J.W., Proc. R. Soc. London, Ser. A 354, 197 (1977).Google Scholar
Armigliato, A., Balboni, R., Carnevale, G.P., Pavia, G., Piccolo, D., Frabboni, S., Benedetti, A., Cullis, A.G., Appl. Phys. Lett. 82, 2172 (2003).CrossRefGoogle Scholar
Usuda, K., Numata, T., Irisawa, T., Hirashita, N., Takagi, S., Mater. Sci. Eng., B 124125, 143 (2005).CrossRefGoogle Scholar
Uesugi, F., Hokazono, A., Takeno, S., Ultramicroscopy 111, 995 (2011).CrossRefGoogle Scholar
Bierwolf, R., Hohenstein, M., Phillipp, F., Brandt, O., Crook, G.E., Ploog, K., Ultramicroscopy 49, 273 (1993).CrossRefGoogle Scholar
Hÿtch, M.J., Snoeck, E., Kilaas, R., Ultramicroscopy 74, 131 (1998).CrossRefGoogle Scholar
Hÿtch, M.J., Snoeck, E., Houdellier, F., Hüe, F., US Patent 8502143 (August 6, 2013).Google Scholar
Hÿtch, M.J., Houdellier, F., Hüe, F., Snoeck, E., Nature 453, 1086 (2008).CrossRefGoogle Scholar
Hÿtch, M.J., Houdellier, F., Hüe, F., Snoeck, E., Ultramicroscopy 111, 1328 (2011).CrossRefGoogle Scholar
Gibson, J.M., Treacy, M.M.J., Ultramicroscopy 14, 345 (1984).CrossRefGoogle Scholar
Lubk, A., Javon, E., Cherkashin, N., Reboh, S., Gatel, C., Hÿtch, M.J., Ultramicroscopy 136, 42 (2014).CrossRefGoogle Scholar
Hirsch, P., Howie, A., Nicholson, R., Pashley, D.W., Whelan, M.J., Electron Microscopy of Thin Crystals (Krieger Publishing, Malabar, 1965).Google Scholar
Spence, J.C.H., High-Resolution Electron Microscopy (Oxford University Press, Oxford, Ed. 3, 2003).Google Scholar
Hÿtch, M. J., Plamann, T., Ultramicroscopy 87, 199 (2001).Google Scholar
Armigliato, A., Balboni, R., Frabboni, S., Appl. Phys. Lett. 86, 063508 (2005).Google Scholar
Chuvilin, A., Kaiser, U., Ultramicroscopy 104, 73 (2005).CrossRefGoogle Scholar
Clément, L., Pantel, R., Kwakman, L.F.T., Rouvière, J.-L., Appl. Phys. Lett. 85, 651 (2004).CrossRefGoogle Scholar
Houdellier, F., Roucau, C., Clément, L., Rouvière, J.L., Casanove, M.J., Ultramicroscopy 106, 951 (2006).CrossRefGoogle Scholar
Huang, J., Kima, M.J., Chidambaram, P.R., Irwin, R.B., Jones, P.J., Weijtmans, J.W., Koontz, E.M., Wang, Y.G., Tang, S., Wise, R., Appl. Phys. Lett. 89, 063114 (2006).CrossRefGoogle Scholar
Zhang, P., Istratov, A.A., Weber, E.R., Kisielowski, C., He, H., Nelson, C., Spence, J.C.H., Appl. Phys. Lett. 89, 161907 (2006).CrossRefGoogle Scholar
Zhao, W., Duscher, G., Rozgonyi, G., Zikry, M.A., Chopra, S., Ozturk, M.C., Appl. Phys. Lett. 90, 191907 (2007).CrossRefGoogle Scholar
Müller, K., Rosenauer, A., Schowalter, M., Zweck, J., Fritz, R., Volz, K., Microsc. Microanal. 18, 995 (2012).CrossRefGoogle Scholar
Liu, H.H., Duan, X.F., Xu, Q., Liu, B.-G., Ultramicroscopy 108, 816 (2008).CrossRefGoogle Scholar
Béché, A., Rouvière, J.-L., Clément, L., Hartmann, J.M., Appl. Phys. Lett. 95, 123114 (2009).Google Scholar
Armigliato, A., Frabboni, S., Gazzadi, G.C., Appl. Phys. Lett. 93, 161906 (2008).CrossRefGoogle Scholar
Liu, J.P., Li, K., Pandey, S.M., Benistant, F.L., See, A., Zhou, M.S., Hsia, L.C., Schampers, R., Klenov, D.O., Appl. Phys. Lett. 93, 221912 (2008).CrossRefGoogle Scholar
Kim, S.W., Yoo, J.-H., Koo, S.-M., Ko, D.-H., Lee, H.-J., Appl. Phys. Lett. 99, 133107 (2011).Google Scholar
Sato, T., Matsumoto, H., Nakano, K., Konno, M., Fukui, M., Nagaoki, I., Taniguchi, Y., J. Phys. Conf. Ser. 241, 012014 (2010).Google Scholar
Hÿtch, M.J., Putaux, J.-L., Pénisson, J.-M., Nature 423, 270 (2003).Google Scholar
Ang, K.-W., Chui, K.-J., Bliznetsov, V., Tung, C.-H., Du, A., Balasubramanian, N., Samudra, G., Li, M.F., Yeo, Y.-C., Appl. Phys. Lett. 86, 093102 (2005).CrossRefGoogle Scholar
Hüe, F., Hÿtch, M.J., Bender, H., Houdellier, F., Claverie, A., Phys. Rev. Lett. 100, 156602 (2008).CrossRefGoogle Scholar
Chung, J.H., Lian, G.D., Rabenberg, L., Appl. Phys. Lett. 93, 081909 (2008).CrossRefGoogle Scholar
Chung, J.H., Lian, G.D., Rabenberg, L., IEEE Electron Device Lett. 31, 854 (2010).CrossRefGoogle Scholar
Diercks, D., Lian, G., Chung, J., Kaufman, M., J. Microsc. 241, 195 (2010).CrossRefGoogle Scholar
de Graef, M., Introduction to Conventional Transmission Electron Microscopy (Cambridge University Press, Cambridge, 2003).Google Scholar
Demarest, J., Hull, R., Schonenberg, S.T., Janssens, K.G.F., Appl. Phys. Lett. 77, 412 (2000).CrossRefGoogle Scholar
Cooper, D., Rouvière, J.-L., Béché, A., Kadkhodazadeh, S., Semenova, E.S., Yvind, K., Dunin-Borkowski, R.E., Appl. Phys. Lett. 99, 261911 (2011).CrossRefGoogle Scholar
Wang, Y.Y., Bruley, J., van Meer, H., Li, J., Domenicucci, A., Murray, C.E., Rouvière, J., Appl. Phys. Lett. 103, 052104 (2013).CrossRefGoogle Scholar
Hüe, F., Hÿtch, M.J., Houdellier, F., Bender, H., Claverie, A., Appl. Phys. Lett. 95, 073103 (2009).CrossRefGoogle Scholar
Cooper, D., Béché, A., Hartmann, J.-M., Carron, V., Rouvière, J.-L., Appl. Phys. Lett. 96, 113508 (2010).CrossRefGoogle Scholar
Denneulin, T., Cooper, D., Hartmann, J.-M., Rouvière, J.-L., J. Appl. Phys. 112, 094314 (2012).Google Scholar
Wang, Z.F., Yao, Y., He, X.Q., Yang, Y., Gu, L., Wang, Y.G., Duan, X.F., Mater. Trans. 53, 2019 (2012).CrossRefGoogle Scholar
Hÿtch, M.J., Houdellier, F., Cherkashin, N., Reboh, S., Javon, E., Benzo, P., Gatel, C., Snoeck, E., Claverie, A., in Transmission Electron Microscopy in Micro-Nanoelectronics, Claverie, A., Ed. (Wiley, London, 2013), C. 4, pp. 81106.Google Scholar
Koch, C.T., Ozdol, V.B., van Aken, P.A., Appl. Phys. Lett. 96, 9 (2010).CrossRefGoogle Scholar
Butler, E.P., Rep. Prog. Phys. 42, 833 (1979).CrossRefGoogle Scholar
Wilsdorf, H.G.F., Rev. Sci. Instrum. 29, 323 (1958).CrossRefGoogle Scholar
Robertson, I., Ferreira, P., Dehm, G., Hull, R., Stach, E.A., MRS Bull. 33, 122 (2008).CrossRefGoogle Scholar
Minor, A.M., Stach, E.A., Morris, J.W. Jr., Appl. Phys. Lett. 79, 1625 (2001).Google Scholar
Minor, A.M., Syed Asif, S.A., Shan, Z.W., Stach, E.A., Cyrankowski, E., Wyrobek, T.J., Warren, O.L., Nat. Mater. 5, 697 (2006).CrossRefGoogle Scholar
Shan, Z.W., Mishra, R.K., Syed Asif, S.A., Warren, O.L., Minor, A.M., Nat. Mater. 7, 115 (2008).CrossRefGoogle Scholar
Legros, M., Gianola, D.S., Motz, C., MRS Bull. 35, 354 (2010).Google Scholar
Haque, M.A., Saif, M.T.A., Proc. Natl. Acad. Sci. U.S.A. 101, 6335 (2004).CrossRefGoogle Scholar
Kiener, D., Minor, A.M., Nano Lett. 11, 3816 (2011).CrossRefGoogle Scholar
Guo, H., Chen, K., Oh, Y., Wang, K., Dejoie, C., Syed Asif, S.A., Warren, O.L., Shan, Z.W., Wu, J., Minor, A.M., Nano Lett. 11, 3207 (2011).CrossRefGoogle Scholar
Tian, L., Cheng, Y.Q., Shan, Z.W., Li, J., Wang, C.C., Han, X.D., Sun, J., Ma, E., Nat. Commun. 3, 609 (2012).CrossRefGoogle Scholar
Chisholm, C., Bei, H., Lowry, M., Oh, J., Syed Asif, S.A., Warren, O.L., Shan, Z.W., George, E.P., Minor, A.M., Acta Mater. 60, 2258 (2012).CrossRefGoogle Scholar