Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T15:16:14.823Z Has data issue: false hasContentIssue false

Nucleation on surfaces and in confinement

Published online by Cambridge University Press:  04 May 2016

Michael L. Whittaker
Affiliation:
Department of Materials Science and Engineering, Northwestern University, USA; [email protected]
Patricia M. Dove
Affiliation:
Department of Geosciences, Virginia Polytechnic Institute and State University, USA; [email protected]
Derk Joester
Affiliation:
Department of Materials Science and Engineering, Northwestern University, USA; [email protected]
Get access

Abstract

A review of recent literature supports the notion that organisms may achieve nanoscale control over the hierarchical assembly of organic–inorganic materials by compartmentalizing reactions into small volumes containing specifically functionalized macromolecules. Such confinement may introduce a degree of determinism to the stochastic process of nucleation by greatly reducing the number of nucleation events, allowing an organism to control nucleation using “soft” organic substrates. In this way, the polymorph, orientation, shape, and size of a crystalline building block can be selected, and its assembly into a larger structure orchestrated by the organic matrix.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Weiner, S., Lowenstam, H.A., On Biomineralization (Oxford University Press, New York, 1989).Google Scholar
Marsh, M.E., Protoplasma 207, 54 (1999).CrossRefGoogle Scholar
Marsh, M.E., Ridall, A.L., Azadi, P., Duke, P.J., J. Struct. Biol. 139, 39 (2002).CrossRefGoogle Scholar
Sone, E.D., Weiner, S., Addadi, L., J. Struct. Biol. 158 (3), 428 (2007).CrossRefGoogle Scholar
Scheffel, A., Gruska, M., Faivre, D., Linaroudis, A., Plitzko, J.M., Schüler, D., Nature 440 (7080), 110 (2005).CrossRefGoogle Scholar
Abreu, F., Sousa, A.A., Aronova, M.A., Kim, Y., Cox, D., Leapman, R.D., Andrade, L.R., Kachar, B., Bazylinski, D.A., Lins, U., J. Struct. Biol. 181 (2), 162 (2013).CrossRefGoogle Scholar
Mahamid, J., Sharir, A., Gur, D., Zelzer, E., Addadi, L., Weiner, S., J. Struct. Biol. 174 (3), 527 (2011).CrossRefGoogle Scholar
Hendley, C.T., Tao, J., Kunitake, J.A.M.R., De Yoreo, J.J., Estroff, L.A., MRS Bull. 40 (6), 480 (2015).CrossRefGoogle Scholar
Wang, C.-M., Liao, H.-G., Ross, F.M., MRS Bull. 40 (1), 46 (2015).CrossRefGoogle Scholar
Habraken, W.J.E.M., Tao, J., Brylka, L.J., Friedrich, H., Bertinetti, L., Schenk, A.S., Verch, A., Dmitrovic, V., Bomans, P.H.H., Frederik, P.M., Laven, J., van der Schoot, P., Aichmayer, B., de With, G., DeYoreo, J.J., Sommerdijk, N.A.J., Nat. Commun. 4, 1507 (2013).CrossRefGoogle Scholar
Nielsen, M.H., Aloni, S., De Yoreo, J.J., Science 345 (6201), 1158 (2014).CrossRefGoogle Scholar
Ross, F.M., Science 350 (6267), 9886 (2015).CrossRefGoogle Scholar
Wallace, A.F., Hedges, L.O., Fernandez-Martinez, A., Raiteri, P., Gale, J.D., Waychunas, G.A., Whitelam, S., Banfield, J.F., De Yoreo, J.J., Science 341 (6148), 885 (2013).CrossRefGoogle Scholar
Demichelis, R., Raiteri, P., Gale, J.D., Quigley, D., Gebauer, D., Nat. Commun. 2, 590 (2011).CrossRefGoogle Scholar
Baumgartner, J., Dey, A., Bomans, P.H.H., Le Coadou, C., Fratzl, P., Sommerdijk, N.A.J.M., Faivre, D., Nat. Mater. 12 (4), 310 (2013).CrossRefGoogle Scholar
De Yoreo, J.J., Gilbert, P.U.P.A., Sommerdijk, N.A.J.M., Penn, R.L., Whitelam, S., Joester, D., Zhang, H., Rimer, J.D., Navrotsky, A., Banfield, J.F., Wallace, A.F., Michel, F.M., Meldrum, F.C., Colfen, H., Dove, P.M., Science 349 (6247), aaa6760 (2015).CrossRefGoogle Scholar
Gal, A., Kahil, K., Vidavsky, N., DeVol, R.T., Gilbert, P.U.P.A., Fratzl, P., Weiner, S., Addadi, L., Adv. Funct. Mater. 24 (34), 5420 (2014).CrossRefGoogle Scholar
Navrotsky, A., Proc. Natl. Acad. Sci. U.S.A. 101 (33), 12096 (2004).CrossRefGoogle Scholar
Debenedetti, P.G., Metastable Liquids (Princeton University Press, Princeton, NJ, 1996).Google Scholar
De Yoreo, J.J., Vekilov, P.G., Rev. Mineral. Geochem. 54, 57 (2003).CrossRefGoogle Scholar
Sear, R.P., J. Phys. Condens. Matter 19 (3), 033101 (2007).CrossRefGoogle Scholar
Hu, Q., Nielsen, M.H., Freeman, C.L., Hamm, L.M., Tao, J., Lee, J.R.I., Han, T.Y.J., Becker, U., Harding, J.H., Dove, P.M., De Yoreo, J.J., Faraday Discuss. 159, 509 (2012).CrossRefGoogle Scholar
Hamm, L.M., Giuffre, A.J., Han, N., Tao, J., Wang, D., De Yoreo, J.J., Dove, P.M., Proc. Natl. Acad. Sci. U.S.A. 111 (4), 1304 (2014).CrossRefGoogle Scholar
Forbes, T.Z., Radha, A.V., Navrotsky, A., Geochim. Cosmochim. Acta 75 (24), 7893 (2011).CrossRefGoogle Scholar
Bruno, M., Massaro, F.R., Pastero, L., Costa, E., Rubbo, M., Prencipe, M., Aquilano, D., Cryst. Growth Des. 13 (3), 1170 (2013).CrossRefGoogle Scholar
Sun, W., Jayaraman, S., Chen, W., Persson, K.A., Ceder, G., Proc. Natl. Acad. Sci. U.S.A. 112 (20), E2735 (2015).Google Scholar
Sohnel, O., Mullin, J.W., J. Cryst. Growth 60, 239 (1982).CrossRefGoogle Scholar
Gebauer, D., Cölfen, H., Nano Today 6 (6), 564 (2011).CrossRefGoogle Scholar
Sommerdijk, N.A.J.M., de With, G., Chem. Rev. 108 (11), 4499 (2008).CrossRefGoogle Scholar
Meldrum, F.C., Cölfen, H., Chem. Rev. 108 (11), 4332 (2008).CrossRefGoogle Scholar
Nudelman, F., Lausch, A.J., Sommerdijk, N.A.J.M., Sone, E.D., J. Struct. Biol. 183 (2), 258 (2013).CrossRefGoogle Scholar
Nudelman, F., Semin. Cell Dev. Biol. 46, 1 (2015).CrossRefGoogle Scholar
Aizenberg, J., Bell Labs Tech. J. 10 (3), 129 (2005).CrossRefGoogle Scholar
Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., Whitesides, G.M., Chem. Rev. 105 (4), 1103 (2005).CrossRefGoogle Scholar
Turnbull, D., Vonnegut, B., Ind. Eng. Chem. 44, 1292 (1952).CrossRefGoogle Scholar
Pokroy, B., Aizenberg, J., CrystEngComm. 9, 1219 (2007).CrossRefGoogle Scholar
Quigley, D., Rodger, P.M., Freeman, C.L., Harding, J.H., Duffy, D.M., J. Chem. Phys. 131 (9), 094703 (2009).CrossRefGoogle Scholar
Giuffre, A.J., Hamm, L.M., Han, N., De Yoreo, J.J., Dove, P.M., Proc. Natl. Acad. Sci. U.S.A. 110 (23), 9261 (2013).CrossRefGoogle Scholar
Aizenberg, J., Science 299, 1 (2003).CrossRefGoogle Scholar
Gong, X., Wang, Y.-W., Ihli, J., Kim, Y.-Y., Li, S., Walshaw, R., Chen, L., Meldrum, F.C., Adv. Mater. 27 (45), 7395 (2015).CrossRefGoogle Scholar
Turnbull, D., J. Appl. Phys. 21 (10), 1022 (1950).CrossRefGoogle Scholar
Miyazawa, Y., Pound, G.M., J. Cryst. Growth 23, 45 (1974).CrossRefGoogle Scholar
Sear, R.P., Int. Mater. Rev. 57 (6), 328 (2012).Google Scholar
Sear, R.P., CrystEngComm 16 (29), 6506 (2014).CrossRefGoogle Scholar
Aizenberg, J., Whitesides, G.M., Black, A.J., Nature 398, 495 (1999).CrossRefGoogle Scholar
Tester, C.C., Whittaker, M.L., Joester, D., Chem. Commun. 50 (42), 5619 (2014).CrossRefGoogle Scholar
Shum, H.C., Bandyopadhyay, A., Bose, S., Weitz, D.A., Chem. Mater. 21 (22), 5548 (2009).CrossRefGoogle Scholar
Stephens, C.J., Ladden, S.F., Meldrum, F.C., Christenson, H.K., Adv. Funct. Mater. 20 (13), 2108 (2010).CrossRefGoogle Scholar
Loste, E., Park, R.J., Warren, J., Meldrum, F.C., Adv. Funct. Mater. 14 (12), 1211 (2004).CrossRefGoogle Scholar
Wang, Y.-W., Christenson, H.K., Meldrum, F.C., Chem. Mater. 26 (20), 5830 (2014).Google Scholar
Mann, S., Hannington, J.P., Williams, R.J.P., Nature 324, 565 (1986).CrossRefGoogle Scholar
Collier, J., Messersmith, P.B., Annu. Rev. Mater. Res. 31, 237 (2001).CrossRefGoogle Scholar
Wolf, S.E., Müller, L., Barrea, R., Kampf, C.J., Leiterer, J., Panne, U., Hoffman, T., Emmerling, F., Tremel, W., Nanoscale 3 (3), 1158 (2011).CrossRefGoogle Scholar
Amstad, E., Gopinadhan, M., Holtze, C., Osuji, C.O., Brenner, M.P., Spaepen, F., Weitz A, D.. Science 349 (6251), 956 (2015).CrossRefGoogle Scholar
Romanowsky, M.B., Abate, A.R., Rotem, A., Holtze, C., Weitz, D.A., Lab Chip 12 (4), 802 (2012).CrossRefGoogle Scholar
Laval, P., Crombez, A., Salmon, J.-B., Langmuir 25 (3), 1836 (2009).CrossRefGoogle Scholar
Stephens, C.J., Kim, Y.-Y., Evans, S.D., Meldrum, F.C., Christenson, H.K., J. Am. Chem. Soc. 133 (14), 5210 (2011).Google Scholar
Schenk, A.S., Albarracin, E.J., Kim, Y.-Y., Ihli, J., Meldrum, F.C., Chem. Commun. 50 (36), 4729 (2014).Google Scholar
Cantaert, B., Beniash, E., Meldrum, F.C., Chem. Eur. J. 19 (44), 14918 (2013).CrossRefGoogle Scholar
Wang, Y.-W., Christenson, H.K., Meldrum, F.C., Adv. Funct. Mater. 23 (45), 5615 (2013).Google Scholar