Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T13:04:05.410Z Has data issue: false hasContentIssue false

Nucleation and the Solid–Liquid Interfacial Free Energy

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

This article reviews the current understanding of the fundamentals of nucleation theory and its use to extract values for the solid–liquid interfacial free energy from experimental and simulation data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Gibbs, J.W., The Scientific Papers of J.W. Gibbs, Vol.1 (Dover, New York, 1961).Google Scholar
2M. Volmer and A. Weber, Z. Phys. Chem. 119 (1925) p.277.Google Scholar
3Frenkel, J., Kinetic Theory of Liquids (Oxford University Press, Oxford, 1946).Google Scholar
4Abraham, F.F., J. Atmospheric Sci. 25 (1968) p.47.2.0.CO;2>CrossRefGoogle Scholar
5Oxtoby, D.W. and Evans, R., J. Chem. Phys. 89 (1988) p.7521.CrossRefGoogle Scholar
6Zhuo, L. and Wu, D.T., to be published.Google Scholar
7Wu, D.T., in Solid State Physics, Vol.50, edited by Ehrenreich, H. and Spaepen, F. (Academic Press, San Diego, 1997) p.37.Google Scholar
8Zeldovich, J.B., Acta Physicochim. U.R.S.S. 18 (1943) p.1.Google Scholar
9Bender, C.M. and Orszag, S.A., Advanced Mathematical Methods for Scientists and Engineers I (Springer, New York, 1999).Google Scholar
10Katz, J.L., Saltsburg, H., and Reiss, H., J. Col-loid Interface Sci. 21 (1966) p.560.CrossRefGoogle Scholar
11Einstein, A., Ann. Phys. 33 (1910) p.1275.Google Scholar
12Katz, J.L. and Wiedersich, H., J. Colloid Interface Sci. 61 (1977) p.351.Google Scholar
13Turnbull, D., J. Chem. Phys. 20 (1952) p. 411.CrossRefGoogle Scholar
14Turnbull, D. and Fisher, J.C., J.Chem. Phys. 17 (1949) p.71.Google Scholar
15Kelton, K.F., Greer, A.L., and Thompson, C.V., J.Chem. Phys. 79 (1983) p.6261.CrossRefGoogle Scholar
16Kelton, K.F., in Solid State Physics, Vol. 45, edited by Ehrenreich, H. and Turnbull, D. (Academic Press, Boston, 1991) p.75.Google Scholar
17Gránásy, L., J. Non-Cryst. Solids 162 (1993) p.301.CrossRefGoogle Scholar
18Gránásy, L., Europhys. Lett. 24 (1993) p. 121.CrossRefGoogle Scholar
19Spaepen, F., Mater. Sci. Eng. A 178 (1994) p.15.CrossRefGoogle Scholar
20Spaepen, F., in Solid State Physics, Vol. 47, edited by Ehrenreich, H. and Turnbull, D. (Academic Press, Boston, 1994) p.1.Google Scholar
21Spaepen, F., Acta Metall. 23 (1975) p.729.CrossRefGoogle Scholar
22Spaepen, F., Scripta Metall. 10 (1976) p. 257.Google Scholar
23Gránásy, L., Int. J. Non-Equilib. Process. 11 (1998) p.113.Google Scholar
24Gránásy, L., Börzsönyi, T., and Pusztai, T., Phys. Rev. Lett. 88 (2002) p.206105–1.CrossRefGoogle Scholar
25Tolman, R.C., J.Chem. Phys. 17 (1949) p.333.CrossRefGoogle Scholar
26Tomino, H., Kusaka, I., Nishioka, K., and Takai, T., J.Crystal Growth 113 (1991) p.633.Google Scholar
27Talanquer, V. and Oxtoby, D., J. Chem. Phys. 99 (1995) p.2865.Google Scholar
28McGraw, R. and Laaksonen, A., Phys. Rev. Lett. 76 (1996) p.2754.Google Scholar
29McGraw, R. and Laaksonen, A., J. Chem. Phys. 106 (1997) p.5284.CrossRefGoogle Scholar
30Wolde, P.R. ten and Frenkel, D., J. Chem. Phys. 109 (1998) p.9901.CrossRefGoogle Scholar
31Wölk, J., Strey, R., Heath, C.H., and Wyslouzil, B.E., J.Chem. Phys. 117 (2002) p.4954.CrossRefGoogle Scholar
32Wölk, J. and Strey, R., J. Phys. Chem. 105 (2001) p.11683.Google Scholar
33Talanquer, V. and Oxtoby, D.W., J. Chem. Phys. 100 (1994) p.5190.CrossRefGoogle Scholar
34Wolde, P.R. ten, Ruiz-Montero, M.J., and Frenkel, D., J.Chem. Phys. 110 (1999) p.1591.Google Scholar
35Chen, L.-J., J. Chem. Phys. 103 (1995) p.10214.CrossRefGoogle Scholar
36Aguado, W.S. and Madden, P.A., J. Chem. Phys. 115 (2001) p.8612.CrossRefGoogle Scholar
37Gelfand, M.P. and Fisher, M.E., Physica A 166 (1990) p.1.Google Scholar
38Hale, B.N., Aust. J.Phys. 49 (1996) p.425.Google Scholar
39Kiefer, J. and Hale, B.N., in Nucleation and Atmospheric Aerosols 2000, edited by Hale, B.N. and Kulmala, M. (AIP Press, Melville, NY, 2000) p.260.Google Scholar
40Kathmann, S.M. and Hale, B.N., J. Phys. Chem. B 105 (2001) p.11719.CrossRefGoogle Scholar
41Katz, J.L. and Spaepen, F., Phil. Mag. B 37 (1978) p.137.CrossRefGoogle Scholar
42Girshick, S.L. and Chiu, C.P., J. Chem. Phys. 93 (1990) p.1273.CrossRefGoogle Scholar
43Wu, D.T., unpublished.Google Scholar
44Kim, Y.J., Wyslouzil, B.E., Wilemski, G., Wölk, J., and Strey, R., J.Phys. Chem. A 108 (2004) p.4365.Google Scholar
45Waals, J.D. van der, Verhand. Koninkl. Akad. Wetensch. Amsterdam 1 (1893) p.1.Google Scholar
46Cahn, J.W. and Hilliard, J.E., J.Chem. Phys. 31 (1959) p.688.Google Scholar
47Bagdassarian, C.K. and Oxtoby, D.W., J.Chem. Phys. 100 (1994) p.2139.CrossRefGoogle Scholar
48Gránásy, L. and Oxtoby, D.W., J.Chem. Phys. 112 (2000) p.2399.Google Scholar
49Wild, R. and Harrowell, P., Phys. Rev. E 56 (1997) p.3265.Google Scholar
50Gránásy, L. and Oxtoby, D.W., J.Chem. Phys. 112 (2000) p.2410.CrossRefGoogle Scholar
51Harrowell, P. and Oxtoby, D.W., J. Chem. Phys. 80 (1984) p.1639.CrossRefGoogle Scholar
52Shen, Y.C. and Oxtoby, D.W., J. Chem. Phys. 105 (1996) p.6517.Google Scholar
53Iwamatsu, M. and Horii, K., J.Phys. Soc. Jpn. 65 (1996) p.2311.CrossRefGoogle Scholar
54Gránásy, L. and Pusztai, T., J.Chem. Phys. 117 (2002) p.10121.CrossRefGoogle Scholar
55Gránásy, L. and Iglói, F., J. Chem. Phys. 107 (1997) p.3634.Google Scholar
56Gránásy, L. and James, P.F., Proc. R. Soc. London, Ser. A 454 (1998) p.1745.Google Scholar
57Gránásy, L. and James, P.F., J. Non-Cryst. Solids 253 (1999) p.210.CrossRefGoogle Scholar
58Shen, Y.C. and Oxtoby, D.W., Phys. Rev. Lett. 77 (1996) p.3585.Google Scholar
59Talanquer, V. and Oxtoby, D.W., J. Chem. Phys. 109 (1998) p.223.CrossRefGoogle Scholar
60Hohenberg, P.C. and Halperin, B.I., Rev. Mod. Phys. 49 (1977) p.435.Google Scholar
61Kobayashi, R., Physica D 63 (1993) p.410.Google Scholar
62Warren, J.A. and Boettinger, W.J., Acta Metall. Mater. 43 (1995) p.689.CrossRefGoogle Scholar
63Karma, A. and Rappel, W.-J., Phys. Rev. E 57 (1998) p.4323.Google Scholar
64Conti, M., Phys. Rev. E 61 (2000) p.642.Google Scholar
65Boettinger, W.J., Warren, J.A., Beckermann, C., and Karma, A., Annu. Rev. Mater. Res. 32 (2002) p.163.Google Scholar
66Hoyt, J.J., Asta, M., and Karma, A., Mater. Sci. Eng., R 41 (2003) p.121.Google Scholar
67Elder, K.R., Drolet, F., Kosterlitz, J.M., and Grant, M., Phys. Rev. Lett. 72 (1994) p.677.Google Scholar
68Drolet, F., Elder, K.R., Grant, M., and Kosterlitz, J.M., Phys. Rev. E 61 (2000) p.6705.Google Scholar
69Pavlik, S.G. and Sekerka, R.F., Physica A 268 (1999) p.283.CrossRefGoogle Scholar
70Pavlik, S.G. and Sekerka, R.F., Physica A 277 (2000) p.415.Google Scholar
71Gránásy, L., Pusztai, T., Douglas, J.F., Warren, J.A., Börzsönyi, T., and Ferreiro, V., Nature Mater. 2 (2003) p.92.CrossRefGoogle Scholar
72Gránásy, L., Börzsönyi, T., and Pusztai, T., in Interface and Transport Dynamics, Computational Modelling, Vol. 32, edited by Emmerich, H., Nestler, B., and Schreckenberg, M. (Springer, Berlin, 2003) p.190.CrossRefGoogle Scholar
73Gránásy, L., Pusztai, T., Börzsönyi, T., Warren, J.A., and Douglas, J.F., Nature Mater. 2 (2004) p.92.Google Scholar
74Roy, A., Rickman, J.M., Gunton, J.D., and Elder, K.R., Phys. Rev. 56 (1998) p.2610.Google Scholar
75Gránásy, L., Pusztai, T., Tóth, G., Jurek, Z., Conti, M., and Kvamme, B., J.Chem. Phys. 119 (2003) p.10376.Google Scholar
76Davidchack, R.L. and Laird, B.B., J. Chem. Phys. 118 (2003) p.7651.CrossRefGoogle Scholar
77Gránásy, L., J. Mol. Struct. 485–486 (1999) p.523.Google Scholar
78Gránásy, L., Pusztai, T., and James, P.F., J.Chem. Phys. 117 (2002) p.6157.Google Scholar
79Wolde, P.R. ten, Ruiz-Montero, M.J., and Frenkel, D., J.Chem. Phys. 104 (1996) p.9932.CrossRefGoogle Scholar
80Yonezawa, F., in Solid State Physics, Vol. 45, edited by Ehrenreich, H. and Turnbull, D. (Academic Press, Boston, 1991) p.179.Google Scholar
81Auer, S. and Frenkel, D., Nature 409 (2001) p.1020.Google Scholar
82Gasser, U., E.Weeks, R., Schofield, A., Pusey, P.N., and Weitz, D.A., Science 292 (2001) p.258.Google Scholar
83Báez, L.A. and Clancy, P., J. Chem. Phys. 102 (1995) p.8138.Google Scholar
84Wolde, P.R. ten, Ruiz-Montero, M.J., and Frenkel, D., Phys. Rev. Lett. 75 (1995) p.2714.Google Scholar