Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T21:48:37.711Z Has data issue: false hasContentIssue false

Novel materials by atomic layer deposition and molecular layer deposition

Published online by Cambridge University Press:  18 November 2011

Markku Leskelä
Affiliation:
University of Helsinki, Finland; [email protected]
Mikko Ritala
Affiliation:
University of Helsinki, Finland; [email protected]
Ola Nilsen
Affiliation:
University of Oslo, Norway; [email protected]
Get access

Abstract

Over the past 10 years, the number of materials that can be processed by atomic layer deposition (ALD) has expanded rapidly. Significant progress has been seen in ALD of high-κ oxides, ternary oxides, and noble metals, which have been studied quite extensively. High-κ oxide processes are used today in various industrial applications. However, many new applications are pushing the need for less common compounds, and therefore new processes are being developed (e.g., for fluorides, Li containing compounds, and phosphates). New ALD processes require new designs for volatile precursors to deliver elements with ligands that ensure self-limiting surface reactions. In addition to inorganics, new polymeric and inorganic-organic hybrid materials are opening new frontiers for ALD, including expansion of the process to include molecular layer deposition. A combination of inorganic and organic parts in the deposited layers offers expanding opportunities for tailoring materials properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Puurunen, R.L., J. Appl. Phys. 97, 121301 (2005).CrossRefGoogle Scholar
2.Leskelä, M., Ritala, M., Angew. Chem. Int. Ed. 42, 5548 (2003).CrossRefGoogle Scholar
4.International Technology Roadmap for Semiconductors, Front End Processes, (2007); http//public.itrs.net.Google Scholar
5.Kuesters, K.H., Beug, M.F., Schroeder, U., Nagel, N., Bewersdorff, U., Dallmann, G., Jakschik, S., Knoefler, R., Kudelka, S., Ludwig, C., Manger, D., Mueller, W., Tilke, A., Adv. Eng. Mater. 11, 241 (2009).CrossRefGoogle Scholar
6.Puurunen, R.I., Sajavaara, T., Santala, E., Miikkulainen, V., Laitinen, M., Leskelä, M., J. Nanosci. Nanotechnol. 11 (2011), in press.CrossRefGoogle Scholar
7.Fröhlich, K., Tapajna, M., Rosova, A., Dobrocka, E., Husekova, K., Aarik, J., Aidla, A., Electrochem. Solid State Lett. 11, G19 (2008).CrossRefGoogle Scholar
8.Kim, S.K., Choi, G.-J., Lee, S.Y., Seo, M., Lee, S.W., Han, J.H., Ahn, H.-S., Han, S., Hwang, C.S., Adv. Mater. 20, 1429 (2008).CrossRefGoogle Scholar
9.Niinistö, J., Kukli, K., Heikkilä, M.J., Ritala, M., Leskelä, M., Adv. Eng. Mater. 11, 222 (2009).CrossRefGoogle Scholar
10.Kim, S.K., Hwang, C.S., Electrochem. Solid State Lett. 11, G9 (2008).CrossRefGoogle Scholar
11.Niinistö, J., Kukli, K., Kariniemi, M., Ritala, M., Leskelä, M., Blasco, N., Pinchart, A., Lachaud, C., Laaroussi, N., Wang, Z., Dussarrat, C., J. Mater. Chem. 18, 5243 (2008).CrossRefGoogle Scholar
12.Niinistö, J., Mäntymäki, M., Kukli, K., Costelle, L., Puukilainen, E., Ritala, M., Leskelä, M., J. Cryst. Growth 312, 245 (2010).CrossRefGoogle Scholar
13.Lee, C.-K., Cho, E., Lee, H.-S., Hwang, C.S., Han, S., Phys. Rev. B 78, 012102 (2008).CrossRefGoogle Scholar
14.Vehkamäki, M., Hatanpää, T., Ritala, M., Leskelä, M., J. Mater. Chem. 14, 3191 (2004).CrossRefGoogle Scholar
15.Vehkamäki, M., Ritala, M., Leskelä, M., Jones, A.C., Davies, H.O., Sajavaara, T., Rauhala, E., J. Electrochem. Soc. 151, F69 (2004).CrossRefGoogle Scholar
16.Ritala, M., Kukli, K., Rahtu, A., Räisänen, P.I., Leskelä, M., Sajavaara, T., Keinonen, J., Science 288, 319 (2000).CrossRefGoogle Scholar
17.Vehkamäki, M., Hatanpää, T., Kemell, M., Ritala, M., Leskelä, M., Chem. Mater. 18, 3883 (2006).CrossRefGoogle Scholar
18.Hwang, G.W., Kim, W.D., Hwang, C.S., Min, Y.-S., Cho, Y.J., J. Electrochem. Soc. 154, H915 (2007).CrossRefGoogle Scholar
19.Min, Y.-S., Cho, Y.J., Aslanov, I.P., Han, J.H., Kim, W.D., Hwang, C.S., Chem. Vap. Deposition 11, 38 (2005).CrossRefGoogle Scholar
20.Seim, H., Mölsä, H., Nieminen, M., Fjellvåg, H., Niinistö, L., J. Mater. Chem. 7, 449 (1997).CrossRefGoogle Scholar
21.Vehkamäki, M., Hatanpää, T., Hänninen, T., Ritala, M., Leskelä, M., Electrochem. Solid State Lett. 2, 504 (1999).CrossRefGoogle Scholar
22.Hatanpää, T., Vehkamäki, , Ritala, M., Leskelä, M., Dalton Trans. 39, 3219 (2010).CrossRefGoogle Scholar
23.Harjunoja, J., Väyrynen, S., Putkonen, M., Niinistö, L., Rauhala, E., Thin Solid Films 253, 5228 (2007).Google Scholar
24.Lee, S.W., Kwon, O.S., Han, J.H., Hwang, C.S., Appl. Phys. Lett. 92, 22903 (2008).Google Scholar
25.Klaus, J.W., Ferro, S.J., George, S.M., Thin Solid Films 360, 145 (2000).CrossRefGoogle Scholar
26.Kim, H., J. Vac. Sci. Technol., B 21, 2231 (2003).CrossRefGoogle Scholar
27.Soininen, P.J., Elers, K.-E., Saanila, V., Kaipio, S., Sajavaara, T., Haukka, S., J. Electrochem. Soc. 152, G122 (2005).CrossRefGoogle Scholar
28.Lim, B.S., Rahtu, A., Gordon, R.G., Nat. Mater. 2, 749 (2003).CrossRefGoogle Scholar
29.Lee, B.H., Hwang, J.K., Nam, J.M., Lee, S.U., Kim, J.T., Koo, S.-M., Baunemann, A., Fischer, R.A., Sung, M.M., Angew. Chem. Int. Ed. 48, 4536 (2009).CrossRefGoogle Scholar
30.Kang, S.-W., Yun, J.-Y., Chang, Y.H., Chem. Mater. 22, 1607 (2010).CrossRefGoogle Scholar
31.Aaltonen, T., Alén, P., Ritala, M., Leskelä, M., Chem. Vap. Deposition 9, 45 (2003).CrossRefGoogle Scholar
32.Aaltonen, T., Arstila, K., Ritala, M., Leskelä, M., Electrochem. Solid State Lett. 8, C99 (2005).CrossRefGoogle Scholar
33.Hämäläinen, J., Munnik, F., Ritala, M., Leskelä, M., Chem. Mater. 20, 3564 (2008).Google Scholar
34.Hämäläinen, J., Puukilainen, E., Kemell, M., Costelle, L., Ritala, M., Leskelä, M., Chem. Mater. 21, 4868 (2009).CrossRefGoogle Scholar
35.Kim, S.K., Han, S., Han, J.H., Hwang, C.S., Appl. Surf. Sci. 257, 4302 (2011).CrossRefGoogle Scholar
36.Niskanen, A., Hatanpää, T., Arstila, K., Leskelä, M., Ritala, M., Chem. Vap. Deposition 13, 408 (2007).CrossRefGoogle Scholar
37.Kariniemi, M., Niinistö, J., Hatanpää, T., Kemell, M., Sajavaara, T., Ritala, M., Leskelä, M., Chem. Mater. 23, 2901 (2011).CrossRefGoogle Scholar
38.Natrajan, G., Maydannik, P.S., Cameron, D.C., Akopyan, I., Novikov, B.V., Appl. Phys. Lett. 97, 241905 (2010).CrossRefGoogle Scholar
39.Pilvi, T., Arstila, K., Leskelä, M., Ritala, M., Chem. Mater. 19, 3387 (2007).CrossRefGoogle Scholar
40.Pilvi, T., Puukilainen, E., Kressig, U., Leskelä, M., Ritala, M., Chem. Mater. 20, 5023 (2008).CrossRefGoogle Scholar
41.Putkonen, M., technical program and abstracts, 9th International Conference on Atomic Layer Deposition, ALD 2009, Monterey (2009), p. 142.Google Scholar
42.Putkonen, M., Aaltonen, T., Alnes, M., Sajavaara, T., Nilsen, O., Fjellvåg, H., J. Mater. Chem. 19, 8767 (2009).CrossRefGoogle Scholar
43.Aaltonen, T., Alnes, M., Nilsen, O., Costelle, L., Fjellvåg, H., J. Mater. Chem. 20, 2877 (2010).CrossRefGoogle Scholar
44.Hämäläinen, J., Hatanpää, T., Holopainen, J., Munnik, F., Ritala, M., Leskelä, M., technical program and abstracts, 11th International Conference on Atomic Layer Deposition, ALD 2011, Cambridge, MA (2011), p. 153.Google Scholar
45.Pore, V., Hatanpää, T., Ritala, M., Leskelä, M., J. Am. Chem. Soc. 131, 3478 (2009).CrossRefGoogle Scholar
46.Ritala, M., Pore, V., Hatanpää, T., Heikkilä, M., Leskelä, M., Mizohata, K., Schrott, A., Raoux, S., Rossnagel, S.M., Microelectron. Eng. 86, 1946 (2009).CrossRefGoogle Scholar
47.Wuttig, M., Yamada, N., Nature Mat. 6, 824 (2007).CrossRefGoogle Scholar
48.Pore, V., Knapas, K., Hatanpää, T., Sarnet, T., Kemell, M., Ritala, M., Leskelä, M., Mizohata, K., Chem. Mater. 23, 247 (2011).CrossRefGoogle Scholar
49.Yoshimura, T., Tatsuura, S., Sotoyama, W., Appl. Phys. Lett. 59, 482 (1991).CrossRefGoogle Scholar
50.Salmi, L.D., Puukilainen, E., Vehkamaeki, M., Heikkilae, M., Ritala, M., Chem. Vap. Deposition 15, 221 (2009).CrossRefGoogle Scholar
51.Putkonen, M., Harjuoja, J., Sajavaara, T., Niinistö, L., J. Mater. Chem. 17, 664 (2007).CrossRefGoogle Scholar
52.Yoshida, S., Ono, T., Esashi, M., Micro Nano Lett. 5 (5), 321 (2010).CrossRefGoogle Scholar
53.Du, Y., George, S.M., J. Phys. Chem. C 111, 8509 (2007).CrossRefGoogle Scholar
54.Adamczyk, N.M., Dameron, A.A., George, S.M., Langmuir 24, 2081 (2008).CrossRefGoogle Scholar
55.Yoshimura, T., Tetsuzo, K.Y., Appl. Phys. Express 2, 015502 (2009).CrossRefGoogle Scholar
56.Loscutoff, P.W., Zhou, H., Clendenning, S.B., Bent, S.F., ACS Nano 4, 331 (2010).CrossRefGoogle Scholar
57.Zhou, H., Bent, S.F., ACS Appl. Mater. Interfaces 3, 505 (2011).CrossRefGoogle Scholar
58.Loscutoff, P.W., Lee, H.-B.-R., Bent, F.F., Chem. Mater. 22, 5563 (2010).CrossRefGoogle Scholar
59.Sabapathy, R.C., Crooks, R.M., Langmuir 16, 7783 (2000).CrossRefGoogle Scholar
60.Li, Y.-H., Wang, D., Buriak, J.M., Langmuir 26, 1232 (2010).CrossRefGoogle Scholar
61.Nilsen, O., Fjellvåg, H., Patent Cooperation Treat, World Intellectual Property Organization, Publication Number WO 2006071126.Google Scholar
62.George, S.M., Yoon, B., Dameron, A.A., Acc. Chem. Res. 42, 498 (2009).CrossRefGoogle Scholar
63.Dameron, A.A., Seghete, D., Burton, B.B., Davidson, S.D., Cavanagh, A.S., Bertrand, J.A., George, S.M., Chem. Mater. 20, 3315 (2008).CrossRefGoogle Scholar
64.Miller, D.C., Foster, R.R., Zhang, Y., Jen, S.-H., Bertrand, J.A., Lu, Z., Seghete, D., O’Patchen, J.L., Yang, R., Lee, Y.-C., J. Appl. Phys. 105, 093527 (2009).CrossRefGoogle Scholar
65.Cho, S., Han, G., Kim, K., Sung, M.M., Angew. Chem. Int. Ed. 50, 2741 (2011).CrossRefGoogle Scholar
66.Peng, Q., Gong, B., VanGundy, R.M., Parsons, G.N., Chem. Mater. 21, 820 (2009).CrossRefGoogle Scholar
67.Liang, X., Weimer, A.W., J. Nanopart. Res. 12, 135 (2010).CrossRefGoogle Scholar
68.Liang, X., Xinhua, Y.M., Yu, M., Li, J., Jiang, Y.-B., Weimer, A.W., Chem. Commun. 46, 7140 (2009).CrossRefGoogle Scholar
69.Seghete, D., Davidson, B.D., Hall, R.A., Chang, Y.J., Bright, V.M., George, S.M., Sens. Actuators, A. A155, 8 (2009).CrossRefGoogle Scholar
70.Klepper, K.B., Nilsen, O., Hansen, P.-A., Fjellvåg, H., Dalton Trans. 40, 4636 (2011).CrossRefGoogle Scholar
71.Klepper, K.B., Nilsen, O., Fjellvåg, H., Dalton Trans. 39, 11628 (2010).CrossRefGoogle Scholar
72.Sood, A., Sundberg, P., Malm, J., Karppinen, M., Appl. Surf. Sci. 257, 6435 (2011).CrossRefGoogle Scholar
73.Yoon, B., Seghete, D., Cavanagh, A.S., George, S.M., Chem. Mater. 21, 5365 (2009).CrossRefGoogle Scholar
74.Park, Y., Han, K.S., Lee, B.H., Cho, S., Lee, K.H., Im, S., Sung, M.M., Org. Electron. 12, 348 (2011).CrossRefGoogle Scholar
75.Lee, B.H., Im, K.K., Lee, K.H., Im, S., Sung, M.M., Thin Solid Films 517, 4056 (2009).CrossRefGoogle Scholar
76.Lee, B.H., Ryu, M.K., Choi, S.-Y., Lee, K.-H., Im, S., Sung, M.M., J. Am. Chem. Soc. 129, 16034 (2007).CrossRefGoogle Scholar