Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T17:36:16.688Z Has data issue: false hasContentIssue false

Novel In Situ Probes for Nanocatalysis

Published online by Cambridge University Press:  31 January 2011

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

During the past few years, substantial effort has been devoted to developing new experimental techniques capable of delivering atomic-scale information on surfaces and nanoparticles under catalytic reaction conditions. Since the advent of surface science, pioneering experiments under highly idealized conditions have been performed (at very low gas pressures, <10−6 mbar), and idealized model material systems (e.g., single crystals) have been investigated. However, understanding chemical reactions on singlecrystal surfaces close to ultrahigh vacuum does not always enable prediction of the performance of nanoparticles operating at gas pressures near or above atmospheric pressure. Therefore, this MRS Bulletin issue focuses on the capabilities of atomic-scaleresolution, high-gas-pressure- and high-temperature-compatible in situ probes sensitive to the structure, chemical composition, and dynamical properties of nanomaterials. It will be demonstrated how novel in situ techniques enable one to bridge the combined pressure and materials gaps from ultrahigh vacuum to atmospheric pressures and from metal single-crystal surfaces to nanoparticles or oxides.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

References

1.G., Ertl, H., Knözinger, J., Weitkamp, Eds., Handbook of Heterogeneous Catalysis (Wiley-VCH, Weinheim, 1997).Google Scholar
2.Nørskov, J.K., Scheffler, M., Toulhoat, H., MRS Bull. 31, 669 (2006).CrossRefGoogle Scholar
3.Rogal, J., Reuter, K., Scheffler, M., Phys. Rev. Lett. 98, 046101 (2007).CrossRefGoogle Scholar
4.Österlund, L., Rasmussen, P.B., Thostrup, P., Lægsgaard, E., Stensgaard, I., Besenbacher, F., Phys. Rev. Lett. 86, 460 (2001).CrossRefGoogle Scholar
5.Rocca, M., Savio, L., Vattuone, L., Burghaus, U., Palomba, V., Novelli, N., Buatier de Mongeot, F., Valbusa, U., Gunnella, R., Comelli, G., Baraldi, A., Lizzit, S., Paolucci, G., Phys. Rev. B 61, 213 (2000).CrossRefGoogle Scholar
6.Stierle, A., Costina, I., Kumaragurubaran, S., Dosch, H., J. Chem. Phys. C 111, 10998 (2007).CrossRefGoogle Scholar
7.Freund, H.-J., Kuhlenbeck, H., Libuda, J., Rupprechter, G., Bäumer, M., Hamann, H., Top. Catal. 15, 201 (2001).CrossRefGoogle Scholar
8.Dellwig, T., Rupprechter, G., Unterhalt, H., Freund, H.-J., Phys. Rev. Lett. 85, 776 (2000).CrossRefGoogle Scholar
9.Raimer, D.R., Goodman, W., J. Mol. Catal. A: Chem. 131, 259 (1998).CrossRefGoogle Scholar
10.Libuda, J., Freund, H.-J., Surf. Sci. Rep. 57, 157 (2005).CrossRefGoogle Scholar
11.Henry, C.R., Surf. Sci. Rep. 31, 231 (1998).CrossRefGoogle Scholar
12.Kasper, N., Stierle, A., Nolte, P., Jin-Phillipp, Y., Wagner, T., de Oteyza, D.G., Dosch, H., Surf. Sci. 600, 2860 (2006).CrossRefGoogle Scholar
13.Peters, K.F., Walker, C.J., Steadman, P., Robach, O., Isern, H., Ferrer, S., Phys. Rev. Lett. 86, 5325 (2001).CrossRefGoogle Scholar
14.Ackermann, M.D., Pedersen, T.M., Hendriksen, B.L.M., Robach, O., Bobaru, S.C., Popa, I., Quiros, C., Kim, H., Hammer, B., Ferrer, S., Frenken, J.W.M., Phys. Rev. Lett. 95, 255505 (2005).CrossRefGoogle Scholar
15.Hendriksen, B.L.M., Bobaru, S.C., Frenken, J.W.M., Surf. Sci. 552, 229 (2004).CrossRefGoogle Scholar
16.Lægsgaard, E., Osterlund, L., Thostrup, P., Rasmussen, P.B., Stensgaard, I., Besenbacher, F., Rev. Sci. Instrum. 72, 3537 (2001).CrossRefGoogle Scholar
17.Rößler, M., Geng, P., Wintterlin, J., Rev. Sci. Instrum. 76, 23705 (2005).CrossRefGoogle Scholar
18.McIntyre, B.J., Salmeron, M., Somorjai, G.A., J. Vac. Sci. Technol. A 11, 1964 (1993).CrossRefGoogle Scholar
19.Ketteler, G., Ogletree, D.F., Bluhm, H., Liu, H., Hebenstreit, E.L.D., Salmeron, M., J. Am. Chem. Soc. 127, 18269 (2005).CrossRefGoogle Scholar
20.Pantförder, J., Pöllmann, S., Zhu, J.F., Borgmann, D., Denecke, R., Steinrück, H.-P., Rev. Sci. Instrum. 76, 14102 (2005).CrossRefGoogle Scholar
21.McCrea, K., Somorjai, G.A., Adv. Catal. 45, 385 (2000).Google Scholar
22.Rupprechter, G., Adv. Catal. 51, 133 (2007).CrossRefGoogle Scholar
23.Beale, A.M., van der Eerden, A.M.J., Kervinen, K., Newton, M.A., Weckhuysen, B.M., Chem. Commun. 24, 3015 (2005).Google Scholar
24.Niemantsverdriet, J.W., Spectroscopy in Catalysis (Wiley-VCH, Weinheim, 2007).CrossRefGoogle Scholar
25.Clausen, B.S., Topsøe, H., Catal. Today 9, 189 (1991).CrossRefGoogle Scholar
26.Newton, M.A., Dent, A.J., Evans, J., Chem. Soc. Rev. 31, 83 (2002).CrossRefGoogle Scholar
27.Newville, M., Ravel, B., Haskel, D., Rehr, J.J., Stern, E.A., Yacoby, Y., Physica B 208–209, 154 (1995).CrossRefGoogle Scholar
28.Gai, P.L., Boyes, E.D., Cat. Rev. Sci. Eng. 34, 1 (1992).Google Scholar
29.Giorgio, S., Joao, S. Sao, Nitsche, S., Chaudanson, D., Sitja, G., Henry, C.R., Ultramicroscopy 106, 503 (2006).CrossRefGoogle Scholar
30.Helveg, S., Lopez-Cartes, C., Sehested, J., Hansen, P.L., Clausen, B.S., Rostrup-Nielsen, J.R., Abild-Pedersen, F., Nørskov, J.K., Nature 427, 426 (2006).CrossRefGoogle Scholar
31.Renaud, G. et al., Science 300, 1416 (2003).CrossRefGoogle Scholar