Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T14:02:38.818Z Has data issue: false hasContentIssue false

Novel Electromechanical Phenomena at the Nanoscale: Phenomenological Theory and Atomistic Modeling

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

In the past two decades, the fact that “small is different” has been established for a wide variety of phenomena, including electrical, optical, magnetic, and mechanical behavior of materials. However, one largely untapped but potentially very important area of nanoscience involves the interplay of electricity and mechanics at the nanoscale. In this article, predicated on both phenomenological approaches and atomistic calculations, we summarize the state-of-the-art in understanding electromechanical coupling at the nanoscale. First, we address flexoelectricity—the coupling of strain gradient to polarization. Flexoelectricity exists in both piezoelectric and nonpiezoelectric dielectrics. As a high-order spatial-dispersion effect, the flexoelectricity becomes more and more important with the reduction of the spatial scale of the problem. Exploitation of this phenomenon and the associated nanoscale size effects can lead to tantalizing applications, such as “piezoelectric nanocomposites without using piezoelectric materials.” The second issue concerns electromechanical effects at the dielectric/metal interface. An interface in solids typically exhibits a lower symmetry compared to that of the associated adhering materials. This symmetry reduction can drastically affect the electromechanical and dielectric behavior of the material at the nanoscale.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Junquera, J., Ghosez, P., Nature 422, 506 (2003);Google Scholar
Sai, N., Kolpak, A.M., Rappe, A.M., Phys. Rev. B 72, 020101 (2005).CrossRefGoogle Scholar
2Wu, X., Stengel, M., Rabe, K.M., Vanderbilt, D., Phys. Rev. Lett. 101, 087601 (2008).CrossRefGoogle Scholar
3Aguado-Puente, P., Junquera, J., Phys. Rev. Lett. 100, 177601 (2008).CrossRefGoogle Scholar
4Meyer, B., Vanderbilt, D., Phys. Rev. B 65, 104111 (2002).CrossRefGoogle Scholar
5Junquera, J., Ghosez, P., J. Comput. Theor. Nanoscience 5, 2071 (2008).CrossRefGoogle Scholar
6Nye, J.F., Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, Oxford, 2004).Google Scholar
7Fousek, J., Cross, L.E., Litvin, D.B., Mater. Lett. 39, 287 (1999);Google Scholar
Tagantsev, A.K., Gerra, G., Setter, N., Phys. Rev. B. 77, 174111 (2008);Google Scholar
Maranganti, R., Sharma, N.D., Sharma, P., Phys. Rev. B 74, 014110 (2006);Google Scholar
Tagantsev, A.K., Phys. Rev. B 34, 5883 (1986).Google Scholar
8Tagantsev, A.K., Phase Transitions 35, 119 (1991).Google Scholar
9Cross, L.E., J. Mater. Sci. 41, 53 (2006).CrossRefGoogle Scholar
10Sharma, N.D., Maranganti, R., Sharma, P., J. Mech. Phys. Solids 55, 2328 (2007).Google Scholar
11Fu, J.Y., Zhu, W.Y., Li, N., Cross, L.E., J. Appl. Phys. 100, 024112 (2006);CrossRefGoogle Scholar
Ma, W.H., Cross, L.E., Appl. Phys. Lett. 88, 232902 (2006).Google Scholar
12Fu, J.Y., Zhu, W.Y., Li, N., Smith, N.B., Cross, L.E., Appl. Phys. Lett. 91, 182910 (2007).CrossRefGoogle Scholar
13Majdoub, M.S., Sharma, P., Cagin, T., Phys. Rev. B 77, 125424 (2008);Google Scholar
Majdoub, M.S., Sharma, P., Cagin, T., Phys. Rev. B, 79, 119904 (2009).Google Scholar
14Kogan, S.M., Fiz. Tverd. Tela Leningrad 5, 2829 (1963).Google Scholar
15Zubko, P., Catalan, G., Buckley, A., Welche, P.R.L., Scott, J.F., Phys. Rev. Lett. 99, 167601 (2007).CrossRefGoogle Scholar
16Kholkin, A., Bdikin, I., Ostapchuk, T., Petzelt, J., Appl. Phys. Lett. 93, 222905 (2008).CrossRefGoogle Scholar
17Maranganti, R., Sharma, P., Phys. Rev. B: arXiv:0903.0684v1; Askar, A., Lee, P.C.Y., Cakmak, A.S., Phys. Rev. B 1, 3525 (1970).Google Scholar
18Dumitrica, T., Landis, C.M., Yakobson, B.I., Chem. Phys. Lett. 360, 182 (2002).CrossRefGoogle Scholar
19Kalinin, S.V., Meunier, V., Phys. Rev. B 77, 033403 (2008).Google Scholar
20Naumov, I., Bratkovsky, A.M., Ranjan, V., http://arxiv.org/abs/0810.1775 (2008).Google Scholar
21Petrov, A.G., Biochim. Biophys. Acta 1561, 1 (2002).Google Scholar
22Levanyuk, A.P., Minyukov, S.A., Fiz. Tverd. Tela 25, 2617 (1983).Google Scholar
23Bratkovsky, A.M., Levanyuk, A.P., Phys. Rev. Lett. 94, 107601 (2005).Google Scholar
24Glinchuk, M.D., Morozovska, A.N., J. Phys.: Condens. Matter 16, 3517 (2004).Google Scholar
25Gerra, G., Tagantsev, A.K., Setter, N., Phys. Rev. Lett. 98, 207601 (2007);Google Scholar
Gerra, G., Tagantsev, A.K., Setter, N., Phys. Rev. Lett. 99, 029901 (2007).Google Scholar
26Gerra, G., Tagantsev, A.K., Setter, N., Phys. Rev. Lett. 94, 107602 (2005).Google Scholar
27Gerra, G., Tagantsev, A.K., Setter, N., Parlinski, K., Phys. Rev. Lett. 96, 107603 (2006);CrossRefGoogle Scholar
Gerra, G., Tagantsev, A.K., Setter, N., Parlinski, K., Phys. Rev. Lett. 99, 169904 (2007).Google Scholar
28Stengel, M., Spaldin, N.A., Nature 443, 679 (2006).Google Scholar
29Mindlin, R.D., Int. J. Solids. Struct. 4, 637 (1968).CrossRefGoogle Scholar