Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T14:18:30.577Z Has data issue: false hasContentIssue false

Nonpolar-Oriented GaN Films for Polarization-Sensitive and Narrow-Band Photodetectors

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

This article reviews the optical polarization properties of unstrained and strained GaN films with a nonpolar orientation. In unstrained a -plane GaN films, the A exciton becomes completely linearly polarized perpendicular to the c-axis, whereas the B and C excitons are only partially polarized. In m -plane or a -plane GaN films under anisotropic in-plane compressive strain, all three interband transitions between the three uppermost valence bands and the conduction band can become linearly polarized for sufficiently large strain values. The complete linear polarization can be directly observed in reflection, transmission, or photoreflectance by a polarization-dependent energy gap. This complete linear polarization can be used to realize polarization-sensitive photodetectors in the ultraviolet spectral range, which do not need a polarization filter in front of the photodetector. By combining a polarization filter and photodetector or two photodetectors from the same material with their c-axes oriented perpendicular to each other, a narrowband photodetection configuration can be achieved in the ultraviolet spectral range with a band width below 8 nm. Since both realizations are also polarization sensitive, a configuration with four photodetectors is necessary to achieve narrow-band sensitivity regardless of the polarization state of the incident light. At the same time, the configuration with four photodetectors allows for the determination of the absolute angle of polarization.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Waltereit, P., Brandt, O., Ramsteiner, M., Uecker, R., Reiche, P., Ploog, K.H., J. Cryst. Growth 218, 143 (2000).CrossRefGoogle Scholar
2Waltereit, P., Brandt, O., Trampert, A., Grahn, H.T., Menniger, J., Ramsteiner, M., Reiche, M., Ploog, K.H., Nature (London) 406, 865 (2000).CrossRefGoogle Scholar
3Ghosh, S., Waltereit, P., Brandt, O., Grahn, H.T., Ploog, K.H., Phys. Rev. B 65, 075202 (2002).Google Scholar
4Misra, P., Behn, U., Brandt, O., Grahn, H.T., Imer, B., Nakamura, S., DenBaars, S.P., Speck, J.S., Appl. Phys. Lett. 88, 161920 (2006).CrossRefGoogle Scholar
5Kojima, K., Ueda, M., Funato, M., Kawakami, Y., Phys. Status Solidi B 244, 1853 (2007).CrossRefGoogle Scholar
6Gardner, N.F., Kim, J.C., Wierer, J.J., Shen, Y.C., Krames, M.R., Appl. Phys. Lett. 86, 111101 (2005).CrossRefGoogle Scholar
7Wirth, R., Moritz, A., Geng, C., Scholz, F., Hangleiter, A., Appl. Phys. Lett. 69, 2225 (1996).CrossRefGoogle Scholar
8Greger, E., Riel, P., Moser, M., Kippenberg, T., Kiesel, P., Döhler, G.H., Appl. Phys. Lett. 71, 3245 (1997).CrossRefGoogle Scholar
9Temkin, H., Panish, M.B., Logan, R.A., Appl. Phys. Lett. 47, 978 (1985).CrossRefGoogle Scholar
10Wang, J., Gudiksen, M.S., Duan, X., Cui, Y., Lieber, C.M., Science 293, 1455 (2001).CrossRefGoogle Scholar
11Razeghi, M., Rogalski, A., J. Appl. Phys. 79, 7433 (1996).CrossRefGoogle Scholar
12Parish, G., Keller, S., Kozodoy, P., Ibbetson, J.P., Marchand, H., Fini, P.T., Fleischer, S.B., DenBaars, S.P., Mishra, U.K., Tarsa, E.J., Appl. Phys. Lett. 75, 247 (1999).CrossRefGoogle Scholar
13Muñoz, E., Monroy, E., Calle, F., Omnès, F., Gibart, P., J. Geophys. Res. 105, 4865 (2000).CrossRefGoogle Scholar
14Pau, J.L., Anduaga, J., Rivera, C., Navarro, Á., Álava, I., Redondo, M., Muñoz, E., Appl. Opt. 45, 7498 (2006).CrossRefGoogle Scholar
15Li, T., Lambert, J.H., Beck, A.L., Collins, C.J., Yang, B., Wong, M.M., Chowdhury, U., Dupuis, R.D., Campbell, J.C., J. Electron. Mater. 30, 872 (2001).CrossRefGoogle Scholar
16Khan, M.A., Shatalov, M., Maruska, H.P., Wang, H.M., Kuokstis, E., Jpn. J. Appl. Phys. Part 1 44, 7191 (2005).CrossRefGoogle Scholar
17Ghosh, S., Brandt, O., Grahn, H.T., Ploog, K.H., Appl. Phys. Lett. 81, 3380 (2002).CrossRefGoogle Scholar
18Rivera, C., Pau, J.L., Muñoz, E., Misra, P., Brandt, O., Grahn, H.T., Ploog, K.H., Appl. Phys. Lett. 88, 213507 (2006).CrossRefGoogle Scholar
19Wilson, G.A., DeFreez, R.K., Proc. SPIE 5416, 157 (2004).CrossRefGoogle Scholar
20Zhang, S.K., Wang, W.B., Yun, F., He, L., Morkoç, H., Zhou, X., Tamargo, M., Alfano, R.R., Appl. Phys. Lett. 81, 4628 (2002).CrossRefGoogle Scholar
21Karrer, U., Dobner, A., Ambacher, O., Stutzmann, M., J. Vac. Sci. Technol. B 18, 757 (2000).CrossRefGoogle Scholar
22Misra, P., Brandt, O., Grahn, H.T., Teisseyre, H., Siekacz, M., Skierbiszewski, C., Łucznik, B., Appl. Phys. Lett. 91, 141903 (2007).CrossRefGoogle Scholar
23Ghosh, S., Rivera, C., Pau, J.L., Muñoz, E., Brandt, O., Grahn, H.T., Appl. Phys. Lett. 90, 091110 (2007).CrossRefGoogle Scholar
24Rivera, C., Muñoz, E., Brandt, O., Grahn, H.T., Appl. Phys. Lett. 91, 203514 (2007).CrossRefGoogle Scholar
25Grzegory, I., Krukowski, S., Leszczynski, M., Perlin, P., Suski, T., Porowski, S., in Nitride Semiconductors Handbook on Materials and Devices, Ruterana, P., Albrecht, M., Neugebauer, J., Eds. (Wiley, Weinheim, 2003), p. 1.Google Scholar
26Teisseyre, H., Skierbiszewski, C., Khachapuridze, A., Feduniewicz-Źmuda, A., Siekacz, M., Łucznik, B., Kamler, G., Kryśko, M., Suski, T., Perlin, P., Grzegory, I., Porowski, S., Appl. Phys. Lett. 90, 081104 (2007).CrossRefGoogle Scholar
27Bir, G.L., Pikus, G.E., Symmetry and Strain Induced Effects in Semiconductors (Wiley, New York, 1974).Google Scholar
28Hopfield, J.J., Thomas, D.G., Phys. Rev. 132, 563 (1963).CrossRefGoogle Scholar
29Stepniewski, R., Korona, K.P., Wysmłek, A., Baranowski, J.M., Pakuła, K., Potemski, M., Martinez, G., Grzegory, I., Porowski, S., Phys. Rev. B 56, 15151 (1997).CrossRefGoogle Scholar
30Kornitzer, K., Ebner, T., Grehl, M., Thonke, K., Sauer, R., Kirchner, C., Schwegler, V., Kamp, M., Leszczynski, M., Grzegory, I., Porowski, S., Phys. Status Solidi B 216, 5 (1999).3.0.CO;2-F>CrossRefGoogle Scholar
31Grahn, H.T., in Nitrides with Nonpolar Surfaces: Growth, Properties and Devices, Paskova, T., Ed. (Wiley, Weinheim, 2008), pp. 155183.Google Scholar
32Rivera, C., Misra, P., Pau, J.L., Muñoz, E., Brandt, O., Grahn, H.T., Ploog, K.H., in Proceedings of the 6th Spanish Conference on Electronic Devices, San Lorenzo de El Escorial, Madrid, Spain, Jan. 30th to Feb. 2nd, (IEEE, Piscataway, 2007), pp. 250253.Google Scholar
33Ghosh, S., Rivera, C., Pau, J.L., Muñoz, E., Brandt, O., Grahn, H.T., Phys. Status Solidi A 205, 1100 (2008).CrossRefGoogle Scholar
34Ghosh, S., Misra, P., Grahn, H.T., Imer, B., Nakamura, S., DenBaars, S.P., Speck, J.S., J. Appl. Phys. 98, 026105 (2005).CrossRefGoogle Scholar
35Bhattacharyya, J., Ghosh, S., Grahn, H.T., Appl. Phys. Lett. 93, 051913 (2008).CrossRefGoogle Scholar