Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T18:08:30.389Z Has data issue: false hasContentIssue false

Nitrogen-vacancy centers close to surfaces

Published online by Cambridge University Press:  06 February 2013

Jörg Wrachtrup
Affiliation:
Stuttgart University and Max Planck Institute for Solid State Physics; [email protected]
Fedor Jelezko
Affiliation:
Ulm University; [email protected]
Bernhard Grotz
Affiliation:
Stuttgart University; [email protected]
Liam McGuinness
Affiliation:
Ulm University; [email protected]
Get access

Abstract

Defects in solid-state systems are responsible for much of what we take for granted in modern society, with applications ranging from electronics and lasers, to metallic alloys with tailored properties, and the unique characteristics of gemstones. As we enter the age of quantum technology, solid-state defects are also having their say, with substantial research focused on using their properties for fundamental tests of quantum mechanics, storage of quantum information, and investigations of quantum decoherence. Two of the most exciting prospects of quantum technology are the creation of computers that take advantage of quantum rather than classical laws to outperform current devices, and the realization of highly sensitive magnetometers limited only by quantum uncertainty. In pursuit of these two goals, many proposals and proof-of-principle experiments have been performed in the solid-state, which required location of defects very close to the host crystal’s surface. This article reviews recent work on creation of nitrogen-vacancy centers near the diamond surface and experiments toward the realization of these goals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kolesov, R., Grotz, B., Balasubramanian, G., Stöhr, R.J., Nicolet, A.A.L., Hemmer, P.R., Jelezko, F., Wrachtrup, J., Nat. Phys. 5, 470 (2009).CrossRefGoogle Scholar
Gaebel, T., Domhan, M., Popa, I., Wittmann, C., Neumann, P., Jelezko, F., Rabeau, J.R., Stavrias, N., Greentree, A.D., Prawer, S., Meijer, J., Twamley, J., Hemmer, P.R., Wrachtrup, J., Nat. Phys. 2, 408 (2006).CrossRefGoogle Scholar
Toyli, D.M., Weis, C.D., Fuchs, G.D., Schenkel, T., Awschalom, D.D., Nano Lett. 10, 3168 (2010).Google Scholar
Hodges, J.S., Li, L., Lu, M., Chen, E.H., Trusheim, M.E., Allegri, S., Yao, X., Gaathon, O., Bakhru, H., Englund, D., New J. Phys. 14, 093004 (2012).CrossRefGoogle Scholar
Pezzagna, S., Rogalla, D., Becker, H.-W., Jakobi, I., Dolde, F., Naydenov, B., Wrachtrup, J., Jelezko, F., Trautmann, C., Meijer, J., Phys. Status Solidi A 208, 2017 (2011).CrossRefGoogle Scholar
Steinert, S., Dolde, F., Neumann, P., Aird, A., Naydenov, B., Balasubramanian, G., Jelezko, F., Wrachtrup, J., Rev. Sci. Instrum. 81, 043705 (2010).CrossRefGoogle Scholar
Jelezko, F., Gaebel, T., Popa, I., Domhan, M., Gruber, A., Wrachtrup, J., Phys. Rev. Lett. 93, 130501 (2004).CrossRefGoogle Scholar
Jelezko, F., Wrachtrup, J., J. Phys. Condens. Matter 16, R1089 (2008).CrossRefGoogle Scholar
Taylor, J.M., Cappellaro, P., Childress, L., Jiang, L., Budker, D., Hemmer, P.R., Yacoby, A., Walsworth, R., Lukin, M.D., Nat. Phys. 4, 810 (2008).Google Scholar
Degen, C.L., Appl. Phys. Lett. 92, 243111 (2008).Google Scholar
Cole, J.H., Hollenberg, L.C.L., Nanotechnology 20, 495401 (2009).Google Scholar
Ohno, K., Heremans, F.J., Bassett, L.C., Myers, B.A., Toyli, D.M., Bleszynski Jayich, A.C., Palmstrøm, C.J., Awschalom, D.D., Appl. Phys. Lett. 101, 082413 (2012).CrossRefGoogle Scholar
Meijer, J., Burchard, B., Domhan, M., Wittmann, C., Gaebel, T., Popa, I., Jelezko, F., Wrachtrup, J., Appl. Phys. Lett. 87, 261909 (2005).Google Scholar
Babinec, T.M., Hausmann, B.J.M., Khan, M., Zhang, Y., Maze, J.R., Hemmer, P.R., Lončar, M., Nat. Nanotechnol. 5, 195 (2010).CrossRefGoogle Scholar
Hausmann, B.J.M., Khan, M., Zhang, Y., Babinec, T.M., Martinick, K., McCutcheon, M., Hemmer, P.R., Lončar, M., Diamond Relat. Mater. 19, 621 (2010).CrossRefGoogle Scholar
Hausmann, B.J.M., Babinec, T.M., Choy, J.T., Hodges, J.S., Hong, S., Bulu, I., Yacoby, A., Lukin, M.D., Lončar, M., New J. Phys. 13, 045004 (2011).CrossRefGoogle Scholar
Rabeau, J.R., Reichart, P., Tamanyan, G., Jamieson, D.N., Prawer, S., Jelezko, F., Gaebel, T., Popa, I., Domhan, M., Wrachtrup, J., Appl. Phys. Lett. 88, 023113 (2006).Google Scholar
Naydenov, B., Reinhard, F., Lämmle, A., Richter, V., Kalish, R., D’Haenens-Johansson, U.F.S., Newton, M., Jelezko, F., Wrachtrup, J., Appl. Phys. Lett. 97, 242511 (2010).CrossRefGoogle Scholar
Meijer, J., Pezzagna, S., Vogel, T., Burchard, B., Bukow, H.H., Rangelow, I.W., Sarov, Y., Wiggers, H., Plümel, I., Jelezko, F., Wrachtrup, J., Schmidt-Kaler, F., Schnitzler, W., Singer, K., Appl. Phys. A 91, 567 (2008).Google Scholar
20. Maletinsky, P., Hong, S., Grinolds, M.S., Hausmann, B., Lukin, M.D., Walsworth, R.L., Loncar, M., Yacoby, A., Nat. Nanotechnol. 7, 320 (2012).Google Scholar
Balasubramanian, G., Chan, I.Y., Kolesov, R., Al-Hmoud, M., Tisler, J., Shin, C., Kim, C., Wojcik, A., Hemmer, P.R., Krueger, A., Hanke, T., Leitenstorfer, A., Bratschitsch, R., Jelezko, F., Wrachtrup, J., Nature 455, 648 (2008).CrossRefGoogle Scholar
Hui, Y.Y., Chang, Y. R., Mohan, N., Lim, T.S., Chen, Y.Y., Chang, H.C., J. Phys. Chem. A 115, 1878 (2011).Google Scholar
Mohan, N., Chen, C.-S., Hsieh, H.-H., Wu, Y.-C., Chang, H.-C., Nano Lett. 10, 3692 (2010).CrossRefGoogle Scholar
Bradac, C., Gaebel, T., Naidoo, N., Sellars, M.J., Twamley, J., Brown, L.J., Barnard, A.S., Plakhotnik, T., Zvyagin, A.V., Rabeau, J.R., Nat. Nanotechnol. 5, 345 (2010).Google Scholar
Tisler, J., Balasubramanian, G., Naydenov, B., Kolesov, R., Grotz, B., Reuter, R., Boudou, J.-P., Curmi, P.A., Sennour, M., Thorel, A., Börsch, M., Aulenbacher, K., Erdmann, R., Hemmer, P.R., Jelezko, F., Wrachtrup, J., ACS Nano 3, 1959 (2009).Google Scholar
Horowitz, V.R. Alemán, B.J., Christle, D.J., Cleland, A.N., Awschalom, D.D., Proc. Natl. Acad. Sci. U.S.A. 109, 13493 (2012).Google Scholar
Barth, M., Schietinger, S., Schröder, T., Aichele, T., Benson, O., J. Lumin. 130, 1628 (2010).CrossRefGoogle Scholar
Schietinger, S., Schröder, T., Benson, O., Nano Lett. 8, 3911 (2008).CrossRefGoogle Scholar
Härtl, A., Schmich, E., Garrido, J.A., Hernando, J., Catharino, S.C.R., Walter, S., Feulner, P., Kromka, A., Steinmüller, D., Stutzmann, M., Nat. Mater. 3, 736 (2004).CrossRefGoogle Scholar
Krueger, A., Lang, D., Adv. Funct. Mater. 22, 890 (2012).Google Scholar
Gaebel, T., Domhan, M., Wittmann, C., Popa, I., Jelezko, F., Rabeau, J., Greentree, A., Prawer, S., Trajkov, E., Hemmer, P.R., Wrachtrup, J., Appl. Phys. B 82, 243 (2006).CrossRefGoogle Scholar
Manson, N.B., Harrison, J.P., Diamond Relat. Mater. 14, 1705 (2005).CrossRefGoogle Scholar
Waldherr, G., Beck, J., Steiner, M., Neumann, P., Gali, A., Frauenheim, Th., Jelezko, F., Wrachtrup, J., Phys. Rev. Lett. 106, 157601 (2011).CrossRefGoogle Scholar
Santori, C., Barclay, P.E., Fu, K.-M.C., Beausoleil, R.G., Phys. Rev. B 79, 125313 (2009).CrossRefGoogle Scholar
Fu, K.M.C., Santori, C., Barclay, P.E., Beausoleil, R.G., Appl. Phys. Lett. 96, 121907 (2010).CrossRefGoogle Scholar
Rondin, L., Dantelle, G., Slablab, A., Grosshans, F., Treussart, F., Bergonzo, P., Perruchas, S., Gacoin, T., Chaigneau, M., Chang, H.-C., Jacques, V., Roch, J.-F., Phys. Rev. B 82, 115449 (2010).Google Scholar
Martin, J., Grebner, W., Sigle, W., Wannemacher, R., J. Lumin. 8384, 493 (1999).CrossRefGoogle Scholar
Mita, Y., Phys. Rev. B 53, 11360 (1996).CrossRefGoogle Scholar
Landstrass, M.I., Ravi, K.V., Appl. Phys. Lett. 55, 975 (1989).Google Scholar
Stacey, A., Simpson, D.A., Karle, T.J., Gibson, B.C., Acosta, V.M., Huang, Z., Fu, K.M.C., Santori, C., Beausoleil, R.G., McGuinness, L.P., Ganesan, K., Tomljenovic-Hanic, S., Greentree, A.D., Prawer, S., Adv. Mater. 24, 3333 (2012).CrossRefGoogle Scholar
Aharonovich, I., Lee, J.C., Magyar, A.P., Buckley, B.B., Yale, C.G., Awschalom, D.D., Hu, E.L., Adv. Mater. 24, Op54 (2012).Google Scholar
Stacey, A., Karle, T.J., McGuinness, L.P., Gibson, B.C., Ganesan, K., Tomljenovic-Hanic, S., Greentree, A.D., Hoffman, A., Beausoleil, R.G., Prawer, S., Appl. Phys. Lett. 100, 071902 (2012).CrossRefGoogle Scholar
Garrido, J.A., Nowy, S., Härtl, A., Stutzmann, M., Langmuir 24, 3897 (2008).CrossRefGoogle Scholar
Hauf, M.V., Grotz, B., Naydenov, B., Dankerl, M., Pezzagna, S., Meijer, J., Jelezko, F., Wrachtrup, J., Stutzmann, M., Reinhard, F., Garrido, J.A., Phys. Rev. B 83, 081304 (2011).CrossRefGoogle Scholar
Maier, F., Riedel, M., Mantel, B., Ristein, J., Ley, L., Phys. Rev. Lett. 85, 3472 (2000).Google Scholar
Kratochvílová, I., Taylor, A., Kovalenko, A., Fendrych, F., Řezáčová, V., Petrák, V., Záliš, S., Šebera, J., Nesládek, M., Mater. Res. Soc. Symp. Proc. 1203, J03 (2010).Google Scholar
Petráková, V., Nesládek, M., Taylor, A., Fendrych, F., Cígler, P., Ledvina, M., Vacík, J., Štursa, J., Kučka, J., Phys. Status Solidi A 208, 2051 (2011).Google Scholar
Petráková, V., Taylor, A., Kratochvílová, I., Fendrych, F., Vacík, J., Kučka, J., Štursa, J., Cígler, P., Ledvina, M., Fišerová, A., Kneppo, P., Nesládek, M., Adv. Funct. Mater. 22, 812 (2012).Google Scholar
Grotz, B., Hauf, M.V., Dankerl, M., Naydenov, B., Pezzagna, S., Meijer, J., Jelezko, F., Wrachtrup, J., Stutzmann, M., Reinhard, F., Garrido, J.A., Nat. Commun. 3, 729 (2012).CrossRefGoogle Scholar
Pezzagna, S., Wildanger, D., Mazarov, P., Wieck, A.D., Sarov, Y., Rangelow, I., Naydenov, B., Jelezko, F., Hell, S.W., Meijer, J., Small 6, 2117 (2010).Google Scholar
Dankerl, M., Lippert, A., Birner, S., Stützel, E.U., Stutzmann, M., Garrido, J.A., Phys. Rev. Lett. 106, 196103 (2011).CrossRefGoogle Scholar
Weber, J.R., Koehl, W.F., Varley, J.B., Janotti, A., Buckley, B.B., Van de Walle, C.G., Awschalom, D.D., Proc. Natl. Acad. Sci. U.S.A. 107, 8513 (2010).Google Scholar
Gali, A., Phys. Rev. B 79, 235210 (2009).CrossRefGoogle Scholar
Maze, J.R., Stanwix, P.L., Hodges, J.S., Hong, S., Taylor, J.M., Cappellaro, P., Jiang, L., Gurudev Dutt, M.V., Togan, E., Zibrov, A.S., Yacoby, A., Walsworth, R.L., Lukin, M.D., Nature 455, 644 (2008).Google Scholar
Hall, L.T., Beart, G.C.G., Thomas, E.A., Simpson, D.A., McGuinness, L.P., Cole, J.H., Manton, J.H., Scholten, R.E., Jelezko, F., Wrachtrup, J., Petrou, S., Hollenberg, L.C.L., Sci. Rep. 2, 401 (2012).Google Scholar
Grotz, B., Beck, J., Neumann, P., Naydenov, B., Reuter, R., Reinhard, F., Jelezko, F., Wrachtrup, J., Schweinfurth, D., Sarkar, B., Hemmer, P., New J. Phys. 13, 055004 (2011).Google Scholar
Chen, Y.-Y., Shu, H., Kuo, Y., Tzeng, Y.-K., Chang, H.-C., Diamond Relat. Mater. 20, 803 (2011).Google Scholar
Tisler, J., Reuter, R., Lämmle, A., Jelezko, F., Balasubramanian, G., Hemmer, P. R., Reinhard, F., Wrachtrup, J., ACS Nano 5, 7893 (2011).Google Scholar
Boudou, J.-P., Curmi, P.A., Jelezko, F., Wrachtrup, J., Aubert, P., Sennour, M., Balasubramanian, G., Reuter, R., Thorel, A., Gaffet, E., Nanotechnology 20, 235602 (2009).Google Scholar
McGuiness, L.P., Yan, Y., Stacey, A., Simpson, D.A., Hall, L.T., Maclaurin, D., Prawer, S., Mulvaney, P., Wrachtrup, J., Caruso, F., Scholten, R.E., Hollenberg, C.L., Nat. Nanotechnol. 6, 358 (2011).Google Scholar