Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-24T14:12:47.214Z Has data issue: false hasContentIssue false

The New “p–n Junction”: Plasmonics Enables Photonic Access to the Nanoworld

Published online by Cambridge University Press:  31 March 2011

Get access

Abstract

Since the development of the light microscope in the 16th century, optical device size and performance have been limited by diffraction. Optoelectronic devices of today are much bigger than the smallest electronic devices for this reason. Achieving control of light—material interactions for photonic device applications at the nanoscale requires structures that guide electromagnetic energy with subwavelength-scale mode confinement. By converting the optical mode into nonradiating surface plasmons, electromagnetic energy can be guided in structures with lateral dimensions of less than 10% of the free-space wavelength. A variety of methods—including electron-beam lithography and self-assembly—have been used to construct both particle and planar plasmon waveguides. Recent experimental studies have confirmed the strongly coupled collective plasmonic modes of metallic nanostructures. In plasmon waveguides consisting of closely spaced silver rods, electromagnetic energy transport over distances of 0.5 m has been observed. Moreover, numerical simulations suggest the possibility of multi-centimeter plasmon propagation in thin metallic stripes. Thus, there appears to be no fundamental scaling limit to the size and density of photonic devices, and ongoing work is aimed at identifying important device performance criteria in the subwavelength size regime. Ultimately, it may be possible to design an entire class of subwavelength-scale optoelectronic components (waveguides, sources, detectors, modulators) that could form the building blocks of an optical device technology—a technology scalable to molecular dimensions, with potential imaging, spectroscopy, and interconnection applications in computing, communications, and chemical/biological detection.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).CrossRefGoogle Scholar
2Quinten, M., Leitner, A., Krenn, J.R., and Aussenegg, F.R., Opt. Lett. 23 (1998) p. 1331.CrossRefGoogle Scholar
3Brongersma, M.L., Hartman, J.W., and Atwater, H.A., Phys. Rev. B 62 (2000) p. R16356.Google Scholar
4Lamprecht, B., Schider, G., Lechner, R.T., Ditlbacher, H., Krenn, J.R., Leitner, A., and Aussenegg, F.R., Phys. Rev. Lett. 84 (2000) p. 4721.CrossRefGoogle Scholar
5Maier, S.A., Brongersma, M.L., Kik, P.G., Meltzer, S., Requicha, A.A.G., and Atwater, H.A., Adv. Mater. 13 (2001) p. 1501.3.0.CO;2-Z>CrossRefGoogle Scholar
6Mie, G., Ann. Phys. 25 (1908) p. 377.CrossRefGoogle Scholar
7Kreibig, U. and Vollmer, M., Optical Properties of Metal Clusters(Springer-Verlag, Berlin, 1994).Google Scholar
8Bohren, C. and Huffman, D., Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).Google Scholar
9Linden, S., Kuhl, J., and Giessen, H., Phys. Rev. Lett. 86(2001) p. 4688.CrossRefGoogle Scholar
10Krenn, J.R., Dereux, A., Weeber, J.C., Bourillot, E., Lacroute, Y., Goudonnet, J.P., Schider, G., Gotschy, W., Leitner, A., Aussenegg, F.R., and Girard, C., Phys. Rev. Lett. 82(1999) p. 2590.Google Scholar
11Maier, S.A., Brongersma, M.L., Kik, P.G., and Atwater, H.A., Phys. Rev. B 65193408 (2002).Google Scholar
12Maier, S.A., Kik, P.G., and Atwater, H.A., Appl. Phys. Lett. 81(2002) p. 1714.Google Scholar
13Maier, S.A., Kik, P.G., and Atwater, H.A., Phys. Rev. B 67205402 (2003).CrossRefGoogle Scholar
14Smith, D.R. and Kroll, N., Phys. Rev. Lett. 85(2000) p. 2933.CrossRefGoogle Scholar
15Pendry, J.B., Phys. Rev. Lett. 85(2001) p. 3966.CrossRefGoogle Scholar
16Maier, S.A., Kik, P.G., Atwater, H.A., Meltzer, S., Harel, E., Koel, B.E., and Re-quicha, A.A.G., Nature Mater. 2(2003) p. 229.CrossRefGoogle Scholar
17García-Vidal, F.J. and Pendry, J.B., Phys. Rev. Lett. 77(1996) p. 1163.CrossRefGoogle Scholar
18Xu, H., Aizpurua, J., Käll, M., and Apell, P., Phys. Rev. E 62(2000) p. 4318.CrossRefGoogle Scholar
19McFarland, A.D. and Duyne, R.P. Van, Nano Lett. 3(2003) p. 1057.CrossRefGoogle Scholar
20Genov, D.A., Sarychev, A.K., Shalaev, V.M., and Wei, A., Nano Lett. 4(2004) p. 153.CrossRefGoogle Scholar
21Hache, F., Ricard, D., and Flytzanis, C., J. Opt. Soc. Am. B 3(1986) p. 1647.CrossRefGoogle Scholar
22Hamanaka, Y., Fukata, K., Nakamura, A., Liz-Marzán, L.M., and Mulvaney, P., Appl. Phys. Lett 84(2004) p. 4938.Google Scholar
23Gehr, R.J. and Boyd, R.W., Chem. Mater. 8(1996) p. 1807.CrossRefGoogle Scholar
24Shen, Y. and Prasad, P.N., Appl. Phys. B 74 (2002) p. 641.CrossRefGoogle Scholar
25Prot, D., Stout, D.B., Lafait, J., Pinçon, N., Palpant, B., and Debrus, S., J. Opt. A 4(2002) p. S99.CrossRefGoogle Scholar
26Penninkhof, J.J., Polman, A., Sweatlock, L.A., Maier, S.A., Atwater, H.A., Vredenberg, A.M., and Kooi, B.J., Appl. Phys. Lett. 83(2003) p. 4137.CrossRefGoogle Scholar
27Sweatlock, L.A., Maier, S.A., Atwater, H.A., Penninkhof, J.J., and Polman, A., Phys. Rev. B(2004) accepted.Google Scholar
28Kliewer, K.L. and Fuchs, R., Phys. Rev. 153 (1967) p. 2.CrossRefGoogle Scholar
29Economou, E.N., Phys. Rev. 182(1969) p. 2.Google Scholar
30Sarid, D., Phys. Rev. Lett. 47(1981) p. 1927; A.E. Craig, G.A. Oldon, and D. Sarid, Opt. Lett. 8(1983) p. 380.Google Scholar
31Burke, J.J., Stegeman, G.I., and Tamir, T., Phys. Rev. B 33(1985) p. 8.Google Scholar
32Berini, P., Optics Letters 24(1999) p. 15; P. Berini, Phys. Rev. B 61(2000) p. 15; P. Berini, Optics Express 7(2000) p. 10; P. Berini, Phys. Rev. B 63(2001) 12.Google Scholar
33Dionne, J.A., Sweatlock, L.A., Atwater, H.A., and Polman, A., Phys. Rev. B(2005) accepted.Google Scholar
34Palik, E., Ghosh, G., Handbook of Optical Constants of Solids II (Academic Press, New York 1991).Google Scholar
35Dionne, J.A., Sweatlock, L.A., Atwater, H.A., Polman, A. (2005) unpublished.Google Scholar
36Figure adapted from Sweatlock, L.A., Maier, S.A., Atwater, H.A., Penninknof, J.J. et al. , “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles, ” Phis. Rev. B (2005) accepted.Google Scholar