Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T14:00:14.927Z Has data issue: false hasContentIssue false

New materials for high-energy-resolution x-ray optics

Published online by Cambridge University Press:  09 June 2017

Hasan Yavaş
Affiliation:
Deutsches Elektronen-Synchrotron, Germany; [email protected]
John P. Sutter
Affiliation:
Diamond Light Source Ltd., UK; [email protected]
Thomas Gog
Affiliation:
Advanced Photon Source, Argonne National Laboratory, USA; [email protected]
Hans-Christian Wille
Affiliation:
Deutsches Elektronen-Synchrotron, Germany; [email protected]
Alfred Q.R. Baron
Affiliation:
RIKEN SPring-8 Center, Japan; [email protected]
Get access

Abstract

The use of crystals other than silicon for x-ray optics is becoming more common for many challenging experiments such as resonant inelastic x-ray scattering and nuclear resonant scattering. As more—and more specialized—spectrometers become available at many synchrotron radiation facilities, interest in pushing the limits of experimental energy resolution has increased. The potentially large improvements in resolution and efficiency that nonsilicon optics offer are beginning to be realized. This article covers the background and state of the art for nonsilicon crystal optics with a focus on a resolution of 10 meV or better, concentrating on compounds that form trigonal crystals, including sapphire, quartz, and lithium niobate, rather than the more conventional cubic materials, including silicon, diamond, and germanium.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Schülke, W., Electron Dynamics by Inelastic X-Ray Scattering (Oxford University Press, New York, 2007).Google Scholar
Ament, L.J.P., van Veenendaal, M., Devereaux, T., Hill, J., van den Brink, J., Rev. Mod. Phys. 83, 705 (2011).Google Scholar
Gerdau, E., DeWaard, H., Eds., Hyperfine Interact. 123–124, 3879 (1999).CrossRefGoogle Scholar
Sutter, J.P., Baron, A.Q.R., Ishikawa, T., Yamazaki, H., J. Phys. Chem. Solids 66, 2306 (2005).Google Scholar
Yavaş, H., Ercan Alp, E., Sinn, H., Alataş, A., Said, A.H., Shvyd’ko, Y., Toellner, T., Khachatryan, R., Billinge, S.J.L., Hasan, M.Z., Sturhahn, W., Nucl. Instrum. Methods Phys. Res. A 582, 149 (2007).CrossRefGoogle Scholar
Gog, T., Casa, D.M., Said, A.H., Upton, M.H., Kim, J., Kuzmenko, I., Huang, X., Khachatryan, R., J. Synchrotron Radiat. 20, 74 (2013).CrossRefGoogle Scholar
Sutter, J.P., Baron, A.Q.R., Miwa, D., Nishino, Y., Tamasaku, K., Ishikawa, T., J. Synchrotron Radiat. 13, 278 (2006).Google Scholar
Shvyd’ko, Y.V., Gerdau, E., Jäschke, J., Leupold, O., Lucht, M., Rüter, H.D., Phys. Rev. B Condens. Matter 57, 4968 (1998).CrossRefGoogle Scholar
Authier, A., Dynamical Theory of X-Ray Diffraction (Oxford University Press, New York, 2004).Google Scholar
Huotari, S., Vankó, G., Albergamo, F., Ponchut, C., Graafsma, H., Henriquet, C., Verbeni, R., Monaco, G., J. Synchrotron Radiat. 12, 467 (2005).Google Scholar
Wille, H.-C., Hermann, R.P., Sergueev, I., Pelzer, U., Möchel, A., Claudio, T., Perßon, J., Rüffer, R., Said, A., Shvyd’ko, Y.V., Europhys. Lett. 91, 62001 (2010).Google Scholar
Sergueev, I., Wille, H.-C., Hermann, R.P., Bessas, D., Shvyd’ko, Y.V., Zając, M., Rüffer, R., J. Synchrotron Radiat. 18, 802 (2011).Google Scholar
Shvyd’ko, Y., Stoupin, S., Shu, D., Collins, S.P., Mundboth, K., Sutter, J., Tolkiehn, M., Nat. Commun. 5, 4219 (2014).Google Scholar
Baron, A.Q.R., in Synchrotron Light Sources and Free-Electron Lasers: Accelerator Physics, Instrumentation and Science Applications, Jaeschke, E.J., Khan, S., Schneider, J.R., Hastings, J.B., Eds. (Springer, Cham, Switzerland, 2016), doi:10.1007/978-3-319-04507-8_41-1.Google Scholar
Verbeni, R., Kocsis, M., Huotari, S., Krisch, M., Monaco, G., Sette, F., Vanko, G., J. Phys. Chem. Solids 66, 2299 (2005).Google Scholar
Ketenoglu, D., Harder, M., Klementiev, K., Upton, M., Taherkhani, M., Spiwek, M., Dill, F.-U., Wille, H.-C., Yavaş, H., J. Synchrotron Radiat. 22, 961 (2015).Google Scholar
Honnicke, M.G., Huang, X., Keister, J.W., Kodituwakku, C.N., Cai, Y.Q., J. Synchrotron Radiat. 17, 352 (2010).Google Scholar
Shvyd’ko, Y., Stoupin, S., Mundboth, K., Kim, J., Phys. Rev. A 87, 43835 (2013).Google Scholar
Kim, J., Shi, X., Casa, D., Qian, J., Huang, X., Gog, T., J. Synchrotron Radiat. 23, 880 (2016).Google Scholar
Brice, J.C., Rev. Mod. Phys. 57, 105 (1985).CrossRefGoogle Scholar
Johnson, G.R., Foise, J.W., Encycl. Appl. Phys. 15, 365 (1996).Google Scholar
Sutter, J.P., Yavaş, H., Phys. Instrum. Detect. (2017), https://arxiv.org/abs/1612.07049.Google Scholar
Ao, T., Harding, E.C., Bailey, J.E., Loisel, G., Patel, S., Sinars, D.B., Mix, L.P., Wenger, D.F., J. Quant. Spectrosc. Radiat. Transf. 144, 92 (2014).Google Scholar
Gog, T., Harasimowicz, T., Dev, B.N., Materlik, G., Europhys. Lett. 25, 253 (1994).Google Scholar
Shvyd’ko, Y.V., Hill, J.P., Burns, C.A., Coburn, D.S., Brajuskovic, B., Casa, D., Goetze, K., Gog, T., Khachatryan, R., Kim, J.-H., Kodituwakku, C.N., Ramanathan, M., Roberts, T., Said, A., Sinn, H., Shu, D., Stoupin, S., Upton, M., Wieczorek, M., Yavas, H., J. Electron. Spectrosc. Relat. Phenom. 188, 140 (2013).Google Scholar
Gray, D.E., American Institute of Physics Handbook (McGraw-Hill, New York, 1957).Google Scholar
Lucht, M., Lerche, M., Wille, H.-C., Shvyd’ko, Yu.V., Rüter, H.D., Gerdau, E., Becker, P., J. Appl. Crystallogr. 36, 1075 (2003).Google Scholar
Etschmann, B., Ishizawa, N., Powder Diffr. 16, 81 (2001).Google Scholar
Shvyd’ko, Y., X-Ray Optics (Springer Berlin Heidelberg, Berlin, Germany, 2004).Google Scholar
Shvyd’ko, Y.V., Gerdau, E., Hyperfine Interact. 123 –124, 741 (1999).Google Scholar
Wille, H.-C., Shvyd’ko, Y.V., Alp, E.E., Rüter, H.D., Leupold, O., Sergueev, I., Rüffer, R., Barla, A., Sanchez, J.P., Europhys. Lett. 74, 170 (2006).Google Scholar
Alexeev, P., Asadchikov, V., Bessas, D., Butashin, A., Deryabin, A., Dill, F.-U., Ehnes, A., Herlitschke, M., Hermann, R.P., Jafari, A., Prokhorov, I., Roshchin, B., Röhlsberger, R., Schlage, K., Sergueev, I., Siemens, A., Wille, H.-C., Hyperfine Interact. 237, 59 (2016).Google Scholar
Chen, W.M., McNally, P.J., Shvyd’ko, Y.V., Tuomi, T., Lerche, M., Danilewsky, A.N., Kanatharana, J., Lowney, D., O’Hare, M., Knuuttila, L., Riikonen, J., Rantamaki, R., Phys. Status Solidi A 186, 365 (2001).3.0.CO;2-9>CrossRefGoogle Scholar
Asadchikov, V.E., Butashin, A.V., Buzmakov, A.V., Deryabin, A.N., Kanevsky, V.M., Prokhorov, I.A., Roshchin, B.S., Volkov, Y.O., Zolotov, D.A., Jafari, A., Alexeev, P., Cecilia, A., Baumbach, T., Bessas, D., Danilewsky, A.N., Sergueev, I., Wille, H.-C., Hermann, R.P., Cryst. Res. Technol. 51, 290 (2016).Google Scholar
Jafari, A., Sergueev, I., Bessas, D., Klobes, B., Roschin, B.S., Asadchikov, V.E., Alexeev, P., Härtwig, J., Chumakov, A.I., Wille, H.-C., Hermann, R.P., J. Appl. Phys. 121, 44901 (2017).Google Scholar