Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T20:19:53.839Z Has data issue: false hasContentIssue false

New Horizons in Carbon Chemistry and Materials Science

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The discovery that C60 Buckminsterfullerene may be created spontaneously in high yield when carbon vapor condenses indicates that graphene sheet curvature and closure is a common occurrence during carbon nucleation to form extended networks. As a consequence, a net microscopic perspective on graphitelike carbonaceous materials has evolved. This perspective is summarized here because the net observations relate to various types of nonplanar graphitic structures that promise to be useful as viable nanoscale engineering materials.

C60 Buckminsterfullerene was discovered in 1985 among the products of chemical nucleation of carbon in the gas phase. The faint whisper, embedded in the helium wind that blew a laser-initiated carbon plasma into a mass spectrometer, was interpreted as the possible signature of the elegant soccer-ball-shaped molecule. That noticed signal, which indicated that a pure 60-carbon-atom molecule might be very stable, was quite unexpected and thus a truly serendipitous discovery. The original aim of the experiments was to simulate the conditions in a red giant carbon star and particularly to probe an earlier proposal that long carbon-chain molecules might have originated in such celestial objects and might have been subsequently ejected into interstellar space. The carbon chains themselves had been discovered to be abundant in certain regions of the interstellar medium by a radioastronomy search program in the late 1970s. The molecular rotational frequencies, which formed the basis for the radio search, resulted from a spectroscopic study of cyanopolyynes that had been synthesized in the laboratory.

Type
Fullerenes
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., and Smalley, R.E., Nature (London) 318 (1985) p. 162.CrossRefGoogle Scholar
2.Kroto, H.W., Chem. Soc. Rev. 11 (1982) p. 435.CrossRefGoogle Scholar
3.Kroto, H.W., Int. Rev. Phys. Chem. 1 (1981) p. 309.CrossRefGoogle Scholar
4.Kroto, H.W., Proc. R. Inst. 58 (1986) p. 45.Google Scholar
5.Baggott, J., Perfect Symmetry; The Accidental Discovery of Buckminsterfullerene (Oxford, 1994).Google Scholar
6.Osawa, E., Kagaku (Kyoto) 25 (1970) (in Japanese) p. 854; Chem. Abstr. 74 (1971) p. 75698v.Google Scholar
7.Yoshida, Z. and Osawa, E., Aromaticity (Kagakudojin, Kyoto, 1971) (in Japanese) p. 174.Google Scholar
8.Bochvar, D.A. and Gal'pern, E.G., Dokl. Akad. Nauk SSSR 209 (1973) p. 610; (English translation Proc. Acad. Sci. 209 (U.S.S.R., 1973) p. 239.Google Scholar
9.Davidson, R.A., Theor. Chim. Acta 58 (1981) p. 193.CrossRefGoogle Scholar
10.Chapman, O., private communication.Google Scholar
11.Haymet, A.D.J., Chem. Phys. Lett. 122 (1985) p. 421.CrossRefGoogle Scholar
12.Jones, D.E.H., New Sci. 32 (November 3, 1966) p. 245.Google Scholar
13.Jones, D.E.H., The Inventions of Daedalus (Freeman, Oxford, 1982) p. 118.Google Scholar
14.Krätschmer, W., Lamb, L.D., Fostiropoulos, K., and Huffman, D.R., Nature (London) 347 (1990) p. 354.CrossRefGoogle Scholar
15.Taylor, R. and Walton, D.R.M., Nature (London) 363 (1993) p. 685.CrossRefGoogle Scholar
16.Prassides, K. and Kroto, H.W., Phys. World 5 (1992) p. 44.CrossRefGoogle Scholar
17.Heydenreich, R.D., Hess, W.M., and Ban, L.L., J. Appl. Cryst. 1 (1968) p. 1.CrossRefGoogle Scholar
18.Stefanescu, D.M., in The Ductile Iron Handbook, p. 1.Google Scholar
19.Thompson, D.W., On Growth and Form (Cambridge University Press, 1942).Google Scholar
20.Franklin, R., Acta Crystallogr. 3 (1950) p. 107.CrossRefGoogle Scholar
21.Franklin, R., Acta Crystallogr. 4 (1951) p. 253.CrossRefGoogle Scholar
22.Iijima, S., J. Cryst. Growth 5 (1980) p. 675.CrossRefGoogle Scholar
23.Ugarte, D., Chem. Phys. Lett. 207 (1993) p. 473.CrossRefGoogle Scholar
24.Zhang, Q., O'Brien, S.C., Heath, J.R., Liu, Y., Curl, R.F., Kroto, H.W., and Smalley, R.E., J. Phys. Chem. 90 (1986) p. 525.CrossRefGoogle Scholar
25.Kroto, H.W. and McKay, K.G., Nature (London) 331 (1988) p. 328.CrossRefGoogle Scholar
26.McKay, K.G., Wales, D.J., and Kroto, H.W., to be published.Google Scholar
27.Kroto, H.W., J. Chem. Soc. Faraday Trans. 86 (1990) p. 2465.CrossRefGoogle Scholar
28.Kroto, H.W., Chem. Brit. 26 (1990) p. 40.Google Scholar
29.Sarkar, A., Kroto, H.W., and Ugarte, D., in preparation.Google Scholar
30.Brooks, J.D. and Taylor, G.H., Carbon 3 (1965) p. 185.CrossRefGoogle Scholar
31.Imamura, T. and Nakamizo, M., Carbon 17 (1979) p. 507.CrossRefGoogle Scholar
32.Sarkar, A. and Kroto, H.W., in preparation.Google Scholar
33.Walton, C.F. and Opar, T.J., Iron Casting Handbook (Iron Casting Society) p. 127.Google Scholar
34.Karsay, S.I., Ductile Iron I (Quebec Iron & Titanium Corp., 1976).Google Scholar
35.Morrogh, H., American Foundryman (April 1948) p. 1.Google Scholar
36.Davey, P., The Architectural Review 179 (1986) p. 35.Google Scholar
37.Heath, J.R., O'Brien, S.C., Zhang, Q., Liu, Y., Curl, R.F., Kroto, H.W., and Smalley, R.E., J. Am. Chem. Soc. 107 (1985) p. 7779.CrossRefGoogle Scholar
38.Hallett, R.A., McKay, K.G., Balm, S.P., Allaf, A.W., Kroto, H.W., and Stace, A.J., unpublished observations.Google Scholar
39.Terrones, M., Hare, J.R, Hsu, K., Abeysenghe, R., and Kroto, H.W., to be published.Google Scholar
40.Mackay, A. and Terrones, H., in The Fullerenes, edited by Kroto, H.W. and Walton, D.R.M. (Cambridge University Press, 1993).Google Scholar
41.Iijima, S., J. Phys. Chem. 91 (1987) p. 3466.CrossRefGoogle Scholar
42.Ebbesen, T.W. and Ajayan, P.M., Nature (London) 358 (1992) p. 220.CrossRefGoogle Scholar
43.Hillert, M. and Lange, N., The Structure of Graphite Filaments (Akademische Verlagsgesellschaft m.b.h., Frankfurt, 1958).Google Scholar
44.Kroto, H.W., Nature (London) 359 (1992) p. 670.CrossRefGoogle Scholar
45.Zhang, X.B., Zhang, X.F., Bernaerts, D., Van Tendeloo, G., Amelinckx, S., Van Landuyt, J., Ivanov, V., Nagy, J.B., Lambin, P., and Lucas, A.A., Europhys. Lett. 27 (1994) p. 141.CrossRefGoogle Scholar
46.Baker, R.T.K., Chemistry and Physics of Carbon, Volume 14, p. 83.Google Scholar
47.Ihara, S., Itoh, S., and Kitakami, J., Phys. Rev. B 48 (1993) p. 5643.CrossRefGoogle Scholar
48.Hare, J.P., Terrones, M., Abeysenghe, R., Hsu, K., and Kroto, H.W., in preparation.Google Scholar