Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-04T11:39:14.374Z Has data issue: false hasContentIssue false

Neutron Scattering in Materials Science: Small-Angle Neutron Scattering Studies of Polymers

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Before the application of small-angle neutron scattering (SANS) to the study of polymer structure, chain conformation studies were limited to light scattering and small-angle x-ray scattering (SAXS) techniques. These experiments were usually conducted in dilute solution, and the methodology to measure radii of gyration, virial coefficients, molecular weights, etc., was well established in the classical works of Guinier, Zimm, Debye and Kratky, who pioneered these techniques during the 1940s and 1950s. This methodology could not be applied to concentrated solutions or bulk polymers because of the difficulty of separating the intra- and inter-molecular components of the scattering function. One attempt to circumvent this difficulty was the experiment by Krigbaum and Godwin, who end-labeled polystyrene molecules with Ag atoms. When dispersed in unlabeled polystyrene, the excess x-ray scattering could in principle be analyzed to provide the end-to-end distance, though in practice the signal-to-noise ratio of the experiment was insufficient for accurately determining this parameter. To our knowledge the first suggestion to use the difference in coherent scattering lengths of deuterium (bD = 0.66 × 10−12cm) and hydrogen (bH = −0.37 × 10−12cm) to create scattering contrast between deuterated and normal (hydrogenous) molecules and provide a direct determination of molecular dimensions was made independently by at least two groups in the late 1960s. By deuterating the whole molecule, as opposed to end-labeling, this proposal increased the signal-to-noise ratio of the experiment by several orders of magnitude and made possible for the first time the practical analysis of molecular conformations in bulk polymers. Even so, such experiments could not be undertaken until the completion in Europe of the first instruments employing long wavelength neutrons and large distances between the entrance slit, sample and detector, which allowed deuterium labeling methods to be successfully applied to polymers in the early 1970s.

Type
Neutron Scattering
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Flory, P.J., Principles of Polymer Chemistry, (Cornell University Press, New York, 1969) p. 399431.Google Scholar
2.Krigbaum, W.R. and Godwin, R.V., J. Chem. Phys. 43 (1965) p. 4523.CrossRefGoogle Scholar
3.Kirste, R.G., Jahresbericht 1969 des Sonderforschungsbereiches Mainz 41 (1970) p. 547.Google Scholar
4.Wignall, G.D., Imperial Chemical Industries (Runcorn), Memo PPR G19 (1970).Google Scholar
5.Schelten, J., Kerntechik 14 (1972) p. 86.Google Scholar
6.Ibel, K., J. Appl. Crystallogr. 9 (1976) p. 196.CrossRefGoogle Scholar
7.Wignall, G.D., in The Physics of Photons and Neutrons with Applications of Deuterium Labeling Methods to Polymers, edited by Wignall, G.D., Crist, B., Russell, T.P., and Thomas, E.L. (Mater. Res. Soc. Symp. Proc. 79, Pittsburgh, PA, 1986) p. 2745; Neutron Scattering from Polymers, edited by Martin Grayson and Jacqueline I. Kroschwitz (Encyclopedia of Polymer Science and Engineering, John Wiley and Sons, New York, 1987) p. 112.Google Scholar
8.Fischer, E.W., Stamm, M., Dettenmaier, M., and Herschenroeder, P., Polymer Preprints 20(1) (1979) p. 219.Google Scholar
9.Williams, C.E.et al., J. Polym. Sci. Polym. Lett. Ed. 17 (1979) p. 379.CrossRefGoogle Scholar
10.Akcasu, A.Z.et al., J. Polym. Sci. 18 (1980) p. 865.Google Scholar
11.Tangari, C.et al., Macromolecules 13 (1980) p. 1546; Macromolecules 15 (1982) p. 132.CrossRefGoogle Scholar
12.Wignall, G.D.et al., Polymer 22 (1981) p. 886.CrossRefGoogle Scholar
13.Flory, P.J., J. Chem. Phys. 17 (1949) p. 303; Statistical Mechanics of Chain Molecules (John Wiley-Interscience, New York and London, 1968) p. 34.CrossRefGoogle Scholar
14.Pechhold, W.R., Kolloid Z 228 (1968) p. 1; G.S.Y. Yeh, Rev. Macromol. Sci. 1 (1972) p.173; G.S.Y. Yeh and P.H. Geil, J. Macromol. Sci. (Phys.) B1(2) (1967) p. 235.CrossRefGoogle Scholar
15.Yoon, D. and Flory, P.J., Macromolecules 9 (1976) p. 294.CrossRefGoogle Scholar
16.Debye, P., J. Appl. Phys. 15 (1944) p. 338; P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, 1969) p. 295.CrossRefGoogle Scholar
17.Zernike, F., thesis), Amsterdam, the Netherlands, 1915.Google Scholar
18.deGennes, P-G., Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979).Google Scholar
19.Flory, P.J., J. Chem. Phys. 10 (1942) p. 51.CrossRefGoogle Scholar
20.Huggins, M., J. Phys. Chem. 46 (1942) p. 151; J. Am. Chem. Soc. 64 (1942) p. 1712.CrossRefGoogle Scholar
21.Kirste, R.G., Kruse, W.A., and Ibel, K., Polymer 16 (1975) p. 120.CrossRefGoogle Scholar
22.Herkt-Maetzky, C. and Schelten, J., Phys. Rev. Lett. 51 (1983) p. 896.CrossRefGoogle Scholar
23.Bates, F.S. and Wignall, G.D., Phys. Rev. Lett. 57 (1986) p. 1429; Macromolecules 19 (1986) p. 932.CrossRefGoogle Scholar
24.Bates, F.S., Wignall, G.D., and Koehler, W.C., Phys. Rev. Lett. 55 (1985) p. 2425.CrossRefGoogle Scholar
25.Bates, F.S., Fetters, L.J., and Wignall, G.D., Macromolecules 21 (1988) p. 1086.CrossRefGoogle Scholar
26.Bates, F.S., Muthukumar, M., Wignall, G.D., and Fetters, L.J., J. Chem. Phys. 89 (1988) p. 535.CrossRefGoogle Scholar
27.Sakurai, S., Hasegawa, H., Hashimoto, T., Hargis, I.G., Aggarwal, S.L., and Han, C.C., Macromolecules 23 (1990) p. 451.CrossRefGoogle Scholar
28.Schwahn, D., Mortensen, K., and Yee-Madeira, H., Phys. Rev. Lett. 58 (1987) p. 1544.CrossRefGoogle Scholar
29.Bates, F.S., Rosedale, J.H., Stepanek, P., Lodge, T.P., Wiltzius, P., Fredrickson, G.H., and Hjelm, R.P., Phys. Rev. Lett., submitted.Google Scholar
30.Binder, K., J. Chem. Phys. 79 (1983) p. 6387.CrossRefGoogle Scholar
31.Joanny, J.F., J. Phys. (Paris) 38 (1977) p. L441.Google Scholar
32.Leibler, L., Macromolecules 13 (1980) p. 1602.CrossRefGoogle Scholar
33.Fredrickson, G.H. and Helfand, E., J. Chem. Phys. 87 (1987) p. 697.CrossRefGoogle Scholar
34.Bates, F.S., Rosedale, J.H., and Fredrickson, G.H., J. Chem. Phys. 92 (1990) p. 6255.CrossRefGoogle Scholar
35.Grancio, M.P. and Williams, D.J., J. Polym. Sci. 8 (1970) p. 2617.CrossRefGoogle Scholar
36.Wai, M.P.et al., Polymer 28 (1987) p. 918.CrossRefGoogle Scholar
37.Fisher, L.W.et al., J. Colloid and Interface Sci. 24 (1988) p. 123.Google Scholar
38.Goodwin, J.W., J. Colloid Interface Sci. 78 (1980) p. 253.CrossRefGoogle Scholar
39.Guinier, A. and Fournet, G., Small-Angle Scattering of X-Rays (Wiley and Sons, Inc., New York, 1955) p. 19.Google Scholar
40.Moore, P.B., J. Appl. Crystallogr. 13 (1980) p. 168.CrossRefGoogle Scholar
41.Moon, R.M. and West, C.D., Physica B 156 (1989) p. 522.CrossRefGoogle Scholar