Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T13:29:30.843Z Has data issue: false hasContentIssue false

Neutron Diffraction from Novel Materials

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The discovery and development of new materials is the foundation of the science and technology “food chains.” Examples of new materials with novel properties that have stimulated new scientific questions and/or led to new technologies include liquid crystals, advanced batteries, structural ceramics, dielectrics, ferroelectrics, catalysts, high-temperature superconductors, har dmagnets, and magnetoresistive devices. Establishing the crystal structure of a newly discovered Compound is a mandatory first step, but the most important contribution of diffraction techniques is to provide an understanding of the relationships among chemical composition, crystal structure, and physical behavior. In this way, diffraction experiments provide critical Information for testing theories that explain novel behavior and guide the optimization of new materials to meet the demands of emerging technologies.

The first samples of newly discovered materials are often polycrystalline. With state-of-the-art neutron powder diffraction data and Rietveld refinement techniques, for structures of modest complexity, the precision for atom positions rivals that obtained by single-crystal diffraction. Rietveld refinement is a method of obtaining accurate values for atom positions and other structural parameters from powder diffraction data by least-squares fitting of a calculated model to the full diffraction pattern. As evidence of thi s success, the Inorganic Crystal Structure Database contains 6044 entries from neutron powder diffraction, 7096 from laboratory x-ray powder diffraction, an d 228 from Synchrotron x-ray powder diffraction. Other reasons for the rapidly growing impact of neutron diffraction include the favorable neutron-scattering cross sections for light elements, the sensitivity to magnetic moments, and the ability to penetrate special sample environments for in situ studies. These strengths are widely accepted and have been exploited for many years. Previous reviews have focused on these topics.

Type
Neutron Scattering in Materials Research
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Young, R. W., ed., The Rietveld Method (International Union of Crystallography, Oxford University Press, New York, 1993).CrossRefGoogle Scholar
2. Based on data from ICSD-1998 [Fachsinfor–mationszentrum (FIZ), Karlsruhe, and Max-Planck-Gesellschaft, Munich, 1998]. For a technical description of the database, see Bergerhoff, G. and Brown, I.D., in Crystallographic Databases (International Union of Crystallography, Chester, UK, 1987) p. 77.Google Scholar
3. For example, see Jorgensen, J.D. and Newsam, J.M., MRS Bull. XV (11) (1990) p. 49; A.W. Hewat, Nucl. Sei. Eng. 110 (1992) p. 408; and C.F. Majkrzak, M.S. Lehmann, and D.E. Cox, in Physical Methods of Chemistry, Vol. 5, edited by B.W. Rossiter and J.F. Hamilton (Wiley & Sons, New York, 1990) p. 123.CrossRefGoogle Scholar
4. For example, see Jorgensen, J.D., Jpn. J. Appl. Phys. 26 (Suppl. 26–3) (1987) p. 2017; I.K. Schuller an d J.D. Jorgensen, MRS Bulletin XIV (1) (1989) p. 27; K. Yvon and M. Francois, Z. Phys B: Condens. Matter 76 (1989) p. 413; A.W. Hewat, in Materials and Crystallographic Aspects of HTc-Superconductivity, edited by E. Kaldis; NATO ASI Series E, Vol. 263 (Kluwer Academic Publishers, Dordrecht, Netherlands, 1994) p. 17; and F. Izumi and E. Takayama-Muromachi, in High-Temperature Supercondueting Materials Science and Engineering—New Concepts and Technology, edited by D. Shi (Pergamon Press, Oxford, 1995) p. 81.CrossRefGoogle Scholar
5.Cava, R.J., Hewat, A.W., Hewat, E.A., Batlogg, B., Marezio, M., Rabe, K.M., Krawjewski, J.J., Peck, W.F. Jr., and Rupp, L.W. Jr., Physica C 165 (1990) p. 419.CrossRefGoogle Scholar
6.Jorgensen, J.D., Veal, B.W., Paulikas, A.P., Nowicki, L.J., Crabtree, G.W., Claus, H., and Kwok, W.K., Phys. Rev. B 41 (1990) p. 1863.CrossRefGoogle Scholar
7.Jorgensen, J.D., Beno, M.A., Hinks, D.G., Soderholm, L., Volin, K.J., Hitterman, R.L., Grace, J.D., Schuller, I.K., Segre, C.U., Zhang, K., and Kleefisch, M.S., Phys. Rev. B 36 (1987) p. 3608; H. Shaked, J.D. Jorgensen, D.G. Hinks, R.L. Hitterman, and B. Dabrowski, Physica C 205 (1993) p. 225.CrossRefGoogle Scholar
8.Jorgensen, J.D., Phys. Today 44 (6) (1991) p. 34; J.D. Jorgensen, P.G. Radaelli, H. Shaked, J.L. Wagner, B.A. Hunter, J.F. Mitchell, R.L. Hitterman, and D.G. Hinks, J. Supercond. 7 (1994) p. 145.CrossRefGoogle Scholar
9.Shaked, H., Shimakawa, Y., Hunter, B.A., Hitterman, R.L., Jorgensen, J.D., Han, P.D., and Payne, D.A., Phys. Rev. B 51 (1995) p. 11784.CrossRefGoogle Scholar
10.Shimakawa, Y., Jorgensen, J.D., Hinks, D.G., Shaked, H., Hitterman, R.L., Izumi, F., Kawashima, T., Takayama-Muromachi, E., and Kamiyama, T., Phys. Rev. B 50 (1994) p. 16008.CrossRefGoogle Scholar
11.Wollan, E.O. and Koehler, W.C., Phys. Rev. 100 (1955) p. 545.CrossRefGoogle Scholar
12.Dai, P., Zhang, J., Mook, H.A., Liou, S.-H., Dowben, P.A., and Plummer, E.W., Phys. Rev. B 54 (1996) p. 3694.CrossRefGoogle Scholar
13.Radaelli, P.G., Marezio, M., Hwang, H.Y., Cheong, S.-W., and Batlogg, B., Phys. Rev. B 54 (1996) p. 8992.CrossRefGoogle Scholar
14.Goodenough, J.B., Phys. Rev. 100 (1955) p. 564.CrossRefGoogle Scholar
15.Radaelli, P.G., Cox, D.E., Marezio, M., and Cheong, S.-W., Phys. Rev. B 55 (1997) p. 3015.CrossRefGoogle Scholar
16.Radaelli, P.G., Cox, D.E., Capogna, L., Cheong, S.-W., and Marezio, M., Phys. Rev. B 59 (1999) p. 14440.CrossRefGoogle Scholar
17.Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., and Smalley, R.E., Nature 318 (1985) p. 162.CrossRefGoogle Scholar
18.David, W.I.F., Ibberson, R.M., Matthewman, J.C., Prassides, K., Dennis, T.J.S., Hare, J.P., Kroto, H.W., Taylor, R., and Walton, D.R.M., Nature 353 (1991) p. 147.CrossRefGoogle Scholar
19.David, W.I.F., Ibberson, R.M., Dennis, T.J.S., Hare, J.P., and Prassides, K., Europhys. Lett. 18 (1992) p. 219.CrossRefGoogle Scholar
20.David, W.I.F., Ibberson, R.M., and Matsuo, T., Proc. R. Soc. London, Ser. A 442 (1993) p. 129.Google Scholar
21.Chow, P.C., Jiang, X., Reiter, G., Wochner, P., Moss, S.C., Axe, J.D., Hanson, J.C., McMullan, R.K., Meng, R.L., and Chu, C.W., Phys. Rev. Lett. 69 (1992) p. 2943.CrossRefGoogle Scholar
22.Argyriou, D.N., Mitchell, J.F., Potter, C.D., Bader, S.D., Kleb, R., and Jorgensen, J.D., Phys. Rev. B 55 (1997) p. R11965; J.M. DeTeresa, M.R. Ibarra, P.A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. Garcia, A. del Moral, and Z. Arnold, Nature 386 (1997) p. 256; R. Osborn, S. Rosenkranz, D.N. Argyriou, L. Vasilou-Doloc, J.W. Lynn, S.K. Sinha, J.F. Mitchell, K.E. Gray, and S.D. Bader, Phys. Rev. Lett. 81 (1998) p. 3964.CrossRefGoogle Scholar
23.Carlile, C.J. and Salter, D.C., High Temp.—High Pressures 10 (1978) p. 1.Google Scholar
24.Goncharenko, I.N., Mirebeau, I., Molina, P., and Boni, P., Physica B 234 (1997) p. 1047.CrossRefGoogle Scholar
25.Klotz, S., Besson, J.M., Hamel, G., Nelmes, R.J., Loveday, J.S., Marshall, W.G., and Wilson, R.M., Appl. Phys. Lett. 66 (1995) p. 1735.CrossRefGoogle Scholar