Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T05:27:09.095Z Has data issue: false hasContentIssue false

Negative-Index Materials: Optics by Design

Published online by Cambridge University Press:  31 January 2011

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Index of refraction, a fundamental optical constant that enters in the descriptions of almost all optical phenomena, has long been considered an intrinsic property of a material. However, the recent progress in negative-index material (NIM) research has shown that the utilization of deep-subwavelength-scale features can provide a means to engineer fundamental optical constants such as permittivity, permeability, impedance, and index of refraction. Armed with new nanofabrication techniques, researchers worldwide have developed and demonstrated a variety of NIMs. One implementation uses a combination of electric and magnetic resonators that simultaneously produce negative permittivity and permeability, and consequently negative refractive index. Others involve chirality, anisotropy, or Bragg resonance in periodic structures. NIM research is the beginning of new optical materials research in which the desired optical properties and functionalities are artificially generated. Clearly, creating negative index materials is not the only possibility, and the most recent developments explore new realms of materials with near-zero indexes and inhomogeneous index profiles that can produce novel phenomena such as invisibility. Furthermore, the concept of controlling macroscopic material properties with a composite structure containing subwavelength-scale features extends to the development of acoustic metamaterials. By providing a review of recent progress in NIM research, we hope to share the excitement of the field with the broader materials research community and also to spur new ideas and research directions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

References

1.Schuster, A., An Introduction to the Theory of Optics (Arnold, London, 1904).Google Scholar
2.Veselago, V.G., Sov. Phys. Usp. 10, 509 (1968).CrossRefGoogle Scholar
3.Pendry, J.B., Phys. Rev. Lett. 85 3966 (2000).CrossRefGoogle Scholar
4.Fang, N., Lee, H., Sun, C., Zhang, X., Science 308, 534 (2005).CrossRefGoogle Scholar
5.Melville, D.O.S., Blaikie, R.J., Opt. Express 13, 2127 (2005); available at http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13–6–2127.CrossRefGoogle Scholar
6.Taubner, T., Korobkin, D., Urzhumov, Y., Shvets, G., Hillenbrand, R., Science 313, 1595 (2007).CrossRefGoogle Scholar
7.Liu, Z., Durant, S., Lee, H., Pikus, Y., Xiong, Y., Sun, C., Zhang, X., Opt. Express 15, 6947 (2007); available at http://www.opticsexpress.org/abstract.cfm?uri=oe-15–11–6947.CrossRefGoogle Scholar
8.Jacob, Z., Alekseyev, L.V., Narimanov, E., Opt. Express 14, 8247 (2006); available at http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-18-8247.CrossRefGoogle Scholar
9.Liu, Z., Lee, H., Xiong, Y., Sun, C., Zhang, X., Science 315, 1686 (2007).CrossRefGoogle Scholar
10.Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J., IEEE Trans. Microwave Theory Technol. 47, 2075 (1999).CrossRefGoogle Scholar
11.Shelby, R.A., Smith, D.R., Schultz, S., Science 292, 77 (2001).CrossRefGoogle Scholar
12.Marqués, R., Medina, F., Rafii-El-Idrissi, R., Phys. Rev. B 65, 144440 (2002).CrossRefGoogle Scholar
13.Marques, R., Medina, F., Rafii-El-Idrissi, R., Phys. Rev. B 65, 144440 (2002).CrossRefGoogle Scholar
14.Yen, T.J., Padilla, W.J., Fang, N., Vier, D.C., Smith, D.R., Pendry, J.B., Basov, D.N., Zhang, X., Science 303, 1494 (2004).CrossRefGoogle Scholar
15.Linden, S., Enkrich, C., Wegener, M., Zhou, J., Koschny, T., Soukoulis, C.M., Science 306, 1351 (2004).CrossRefGoogle Scholar
16.Enkrich, C., Wegener, M., Linden, S., Burger, S., Zschiedrich, L., Schmidt, F., Zhou, J.F., Koschny, Th., Soukoulis, C.M., Phys. Rev. Lett. 95, 203901 (2005).CrossRefGoogle Scholar
17.Podolskiy, V.A., Sarychev, A.K., Shalaev, V.M., J. Nonlinear Opt. Phys. Mater. 11, 65 (2002).CrossRefGoogle Scholar
18.Shalaev, V.M., Cai, W., Chettiar, U.K., Yuan, H.-K., Sarychev, A.K., Drachev, V.P., Kildishev, A.V., Opt. Lett. 30, 3356 (2005).CrossRefGoogle Scholar
19.Zhang, S., Fan, W., Panoiu, N.C., Malloy, K.J., Osgood, R.M., Brueck, S.R.J., Phys. Rev. Lett. 95, 137404 (2005).CrossRefGoogle Scholar
20.Dolling, G., Enkrich, C., Wegener, M., Soukoulis, C.M., Linden, S., Science 312, 892 (2006).CrossRefGoogle Scholar
21.Dolling, G., Wegener, M., Soukoulis, C.M., Linden, S., Opt. Lett. 32, 53 (2007).CrossRefGoogle Scholar
22.Pendry, J.B., Science 306, 1353 (2004).CrossRefGoogle Scholar
23.Anthony, L.A., Hoffman, A.J., Alekseyev, L., Howard, S.S., Franz, K.J., Wasserman, D., Podolskiy, V.A., Narimanov, E.E., Sivco, D.L., Gmachl, C., Nat. Mater. 6, 946 (2007).Google Scholar
24.Luo, C., Johnson, S.G., Joannopoulos, J.D., Pendry, J.B., Phys. Rev. B 65, 201104R (2002).CrossRefGoogle Scholar
25.Notomi, M., Phys. Rev. B 62, 10696 (2000).CrossRefGoogle Scholar
26.Cubukcu, E., Aydin, K., Ozbay, E., Foteinopoulou, S., Soukoulis, C.M., Nature 423, 604 (2003).CrossRefGoogle Scholar
27.Schonbrun, E., Yamashita, T., Park, W., Summers, C.J., Phys. Rev. B 73, 195117 (2006).CrossRefGoogle Scholar
28.Schonbrun, E., Wu, Q., Park, W., Abashin, M., Fainman, Y., Yamashita, T., Summers, C.J., Appl. Phys. Lett. 90, 041113 (2007).CrossRefGoogle Scholar
29.Shen, J.T., Catrysse, P.B., Fan, S., Phys. Rev. Lett. 94, 197401 (2005).CrossRefGoogle Scholar
30.Silveirinha, M., Engheta, N., Phys. Rev. Lett. 97, 157403 (2006).CrossRefGoogle Scholar
31.Pendry, J.B., Schurig, D., Smith, D.R., Science 312, 1780 (2006).CrossRefGoogle Scholar
32.Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., Zhang, X., Nat. Mater. 5, 452 (2006).CrossRefGoogle Scholar