Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T13:27:10.991Z Has data issue: false hasContentIssue false

Near-Field Scanning Optical Microscopy Studies of Materials and Devices

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Near-field scanning optical microscopy (NSOM) provides a means to study optical and optoelectronic properties of materials at the nanometer scale. The key to achieving resolution higher than the diffraction limit is to place a subwavelength-sized light source—e.g., an aperture—within the near-field zone of the sample. In this case, the area of the sample illuminated is determined by the aperture size and not by the wavelength (see Figure 1). An image can then be formed by moving the sample and light source with respect to each other. While the principle of near-field optics is straightforward, its realization at visible-light wavelengths was not achieved until the invention of scanning-probe techniques in the 1980s. Since Betzig et al. demonstrated in 1991 that bright subwavelength apertures can be made by tapering and metal-coating single-mode optical fibers, research activities involving NSOM have increased tremendously. The later incorporation of shear-force feedback to regulate tip-sample separation adds another strength to NSOM. Using this distance regulation, a topographic image similar to that obtained by a conventional scanning force microscope is acquired simultaneously with the optical image. This provides a way to correlate structural and physical properties at the same sample positions and greatly simplifies interpretation of the NSOM data.

Type
Nanoscale Characterization of Materials
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Synge, E.H., Philos. Mag. 6 (1928) p. 356.CrossRefGoogle Scholar
2.Pohl, D.W., Denk, W., and Lanz, M., Appl. Phys. Lett. 44 (1984) p. 651; A. Harootunian, E. Betzig, M. Isaacson, and A. Lewis, Appl. Phys. Lett. 49 (1986) p. 674.CrossRefGoogle Scholar
3.Betzig, E., Trautman, J.K., Harris, T.D., Weiner, J.S., and Kostelak, R.L., Science 251 (1991) p. 1468.CrossRefGoogle Scholar
4.Betzig, E., Finn, P.L., and Weiner, J.S., Appl. Phys. Lett. 60 (1992) p. 2484; R. Toledo-Crow, P.C. Yang, Y. Chen, and M. Vaez-Iravani, Appl. Phys. Lett. p. 2957.CrossRefGoogle Scholar
5. For reviews see Paesler, M.A. and Moyer, P.J., Near-field Optics (John Wiley & Sons, Inc., New York, 1996).Google Scholar
6.Hsu, J.W.P., Fitzgerald, E.A., Xie, Y.H., and Silverman, P.J., Appl. Phys. Lett. 65 (1994) p. 344.CrossRefGoogle Scholar
7.Hsu, J.W.P., Fitzgerald, E.A., Xie, Y.H., and Silverman, P.J., J. Appl. Phys. 79 (1996) p. 7743.CrossRefGoogle Scholar
8.Hsu, J.W.P., Gray, M.H., and Xu, Q., Scanning Microsc. 11 (1997).Google Scholar
9. For example, see Mii, Y.J., Xie, Y.H., Fitzgerald, E.A., Monroe, D., Thiel, F.A., Weir, B.E., and Feldman, L.C., Appl. Phys. Lett. 59 (1991) p. 1611.CrossRefGoogle Scholar
10.Fitzgerald, E.A., Xie, Y.H., Monroe, D., Silverman, P.J., Kuo, J.M., Kortan, A.R., Thiel, F.A., and Weir, B.E., J. Vac. Sci. Technol. B 10 (1992) p. 1807.CrossRefGoogle Scholar
11.Xu, Q., Gray, M.H., and Hsu, J.W.P., J. Appl. Phys. in press.Google Scholar
12.Gray, M.H. and Hsu, J.W.P., presented at the 1997 APS March Meeting, Kansas City, 1997 (unpublished).Google Scholar
13.McDaniel, E.B., Gausepohl, S.C., Li, C-T., Lee, M., Hsu, J.W.P., Rao, R.A., and Eom, C.B., Appl. Phys. Lett. 70 (1997) p. 1882.CrossRefGoogle Scholar
14.Hsu, J.W.P., McDaniel, E.B., Rao, R.A., and Eom, C.B., Mater. Res. Soc. Symp. Proc. (1997).Google Scholar
15.Buratto, S.K., Hsu, J.W.P., Trautman, J.K., Betzig, E., Bylsma, R.B., Bahr, C.C., and Cardillo, M.J., J. Appl. Phys. 76 (1994) p. 7720.CrossRefGoogle Scholar
16.Buratto, S.K., Hsu, J.W.P., Trautman, J.K., Betzig, E., Bylsma, R.B., Bahr, C.C., and Cardillo, M.J., Appl. Phys. Lett. 65 (1994) p. 2654.CrossRefGoogle Scholar
17.Goldberg, B.B., Unlu, M.S., Herzog, W.D., Ghaemi, H.F., and Towe, E., IEEE J. Quantum Electron. 1 (1995) p. 1073.CrossRefGoogle Scholar
18.Lienau, Ch., Richter, A., Klehr, A., and Elsaesser, T., Appl. Phys. Lett. 69 (1996) p. 2471.CrossRefGoogle Scholar
19.Herzog, W.D., Unlu, M.S., Goldberg, B.B., Rhodes, G.H., and Harder, C., Appl. Phys. Lett. 70 (1997) p. 688.CrossRefGoogle Scholar
20.Hess, H.F., Betzig, E., Harris, T.D., Pfeiffer, L.N., and West, K.W., Science 264 (1994) p. 1740.CrossRefGoogle Scholar
21.Grober, R.D., Harris, T.D., Trautman, J.K., Betzig, E., Wegscheider, W., Pfeiffer, L., and West, K., Appl. Phys. Lett. 64 (1994) p. 1421.CrossRefGoogle Scholar
22.Harris, T.D., Gershoni, D., Grober, R.D., Pfeiffer, L., West, K., and Chand, N., Appl. Phys. Lett. 68 (1996) p. 988.CrossRefGoogle Scholar
23.Ghami, H.F., Goldberg, B.B., Cates, C., Wang, P.D., Torres, C.M. Sotomayor, Fritze, M., and Nurmikko, A., Superlattices and Microstructures 17 (1995) p. 15; Y. Toda, M. Kourogi, and M. Ohtsu, Appl. Phys. Lett. 69 (1996) p. 827.CrossRefGoogle Scholar
24.Levy, J., Nikitin, V., Kikkawa, J.M., Cohen, A., Samarth, N., Garcia, R., and Awschalom, D.D., Phys. Rev. Lett. 76 (1996) p. 1948.CrossRefGoogle Scholar
25.Flack, F., Samarth, N., Nikitin, V., Crowell, P.A., Shi, J., Levy, J., and Awschalom, D.D., Phys. Rev. B 54 (1996) p. R17312.CrossRefGoogle Scholar
26.McDaniel, A.A., Hsu, J.W.P., and Gabor, A.M., Appl. Phys. Lett, in press.Google Scholar
27.Liu, J. and Kuech, T.F., Appl. Phys. Lett. 69 (1996) p. 662.CrossRefGoogle Scholar
28.Liu, J., Perkins, N.R., Norton, M.N., Redwing, J.M., Tischler, M.A., and Kuech, T.F., Appl. Phys. Lett. 69 (1996) p. 3519.CrossRefGoogle Scholar
29.Leong, J.K., McMurray, J., Williams, C.C., and Stringfellow, G.B., J. Vac. Sci. Technol. B 14 (1996) p. 3113.CrossRefGoogle Scholar
30.Leong, J.K., McMurray, J., Williams, C.C., and Stringfellow, G.B., Phys. Rev. B (1997).Google Scholar
31.Gregor, M.J., Blome, P.G., Ulbrich, R.G., Grossmann, P., Grosse, S., Feldmann, J., Stolz, W., Gobel, E.O., Arent, D.J., Bode, M., Bertness, K.A., and Olson, J.M., Appl. Phys. Lett. 67 (1995) p. 3572.CrossRefGoogle Scholar
32.Betzig, E. and Trautman, J.K., Science 257 (1992) p. 189.CrossRefGoogle Scholar
33.Butler, D.J., Nugent, K.A., and Roberts, A., J. Appl. Phys. 75 (1994) p. 2753.CrossRefGoogle Scholar
34.Dhar, L., Lee, H.J., Laskowski, E.J., Buratto, S.K., Narayanan, C., Presby, H.M., Bahr, C.C., Anthony, P.J., and Cardillo, M.J., SPIE Proc. 2535 (1995) p. 120.CrossRefGoogle Scholar
35.Choo, A.G., Jackson, H.E., Thiel, U., De Brabander, G.N., and Boyd, J.T., Appl. Phys. Lett. 65 (1994) p. 947.CrossRefGoogle Scholar
36.McDaniel, E.B., Hsu, J.W.P., Goldner, L.S., Tonucci, R.J., Shirley, E.L., and Bryant, G.W., Phys. Rev. B 55 (1997) p. 10878.CrossRefGoogle Scholar
37.Jahncke, C.L., Paesler, M.A., and Hallen, H.D., Appl. Phys. Lett. 67 (1995) p. 2483.CrossRefGoogle Scholar
38.LaRosa, A.H., Yakobson, B.I., and Hallen, H.D., in Diagnostic Techniques for Semiconductor Materials Processing II, edited by Pang, S.W., Glembocki, O.J., Pollak, F.H., Celii, F., and Torres, C.M. Sotomayor (Mater. Res. Soc. Symp. Proc. 406, Pittsburgh, 1995); A.H. LaRosa, B.I. Yakobson, and H.D. Hallen, Appl. Phys. Lett. 70 (1997) p. 1656.Google Scholar
39.Vertikov, A., Kuball, M., Nurmikko, A.V., and Maris, H.J., Appl. Phys. Lett. 69 (1996) p. 2465.CrossRefGoogle Scholar