Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T04:22:46.778Z Has data issue: false hasContentIssue false

Nature-inspired design of strong, tough glass-ceramics

Published online by Cambridge University Press:  06 March 2017

Qiang Fu
Affiliation:
Corning Incorporated, USA; [email protected]
George H. Beall
Affiliation:
Corning Incorporated, USA; [email protected]
Charlene M. Smith
Affiliation:
Corning Incorporated, USA; [email protected]
Get access

Abstract

Since the discovery of glass-ceramics by Stookey in the 1950s, there has been increasing demand for glass-ceramics with high strength and toughness for medical, structural, and consumer electronics markets. This article reviews recent developments in composition, microstructure, and mechanical properties of glass-ceramics, with an emphasis on their mechanical performance. It reveals that glass-ceramics with strength and toughness comparable to structural ceramics, such as Al2O3, have been successfully developed. Meanwhile, efforts are being devoted to creating glass-ceramics with further improved damage resistance. With inspiration from natural materials such as jade, baddeleyite, bone, and nacre, glass-ceramics with unique microstructures and properties have been obtained. Further progress is needed in the design of novel compositions, microstructures, and phase assemblages to activate multiple toughening mechanisms in glass-ceramics for significant improvements in strength and toughness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Stookey, S.D., US Patent 2,920,971 (1960).Google Scholar
Montazerian, M., Zanotto, E.D., J. Biomed. Mater. Res. A 104, 1231 (2016).CrossRefGoogle Scholar
Zanotto, E.D., Am. Ceram. Soc. Bull. 89, 19 (2010).Google Scholar
Beall, G.H., Pinckney, L.R., J. Am. Ceram. Soc. 82, 5 (1999).CrossRefGoogle Scholar
Holand, W., Beall, G., Glass-Ceramic Technology, 2nd ed. (Wiley, Hoboken, NJ, 2011).Google Scholar
Beall, G., Annu. Rev. Mater. Sci. 22, 91 (1992).CrossRefGoogle Scholar
Beall, G.H., J. Non Cryst. Solids 129, 163 (1991).CrossRefGoogle Scholar
Beall, G.H., US Patent 4,386,162 (1983).Google Scholar
Holand, W., Beall, G., Glass-ceramic Technology (Wiley, Hoboken, NJ, 2002).Google Scholar
Beall, G.H., Comte, M.J.M., Dale, G.O., Pinckney, L.R., Smith, C.M., Stewart, R.L., Tietje, S.A., US Patent 8,664,131 (2015).Google Scholar
Höland, W., Schweiger, M., Frank, M., Rheinberger, V., J. Biomed. Mater. Res. 53, 297 (2000).3.0.CO;2-G>CrossRefGoogle Scholar
Denry, I., Holloway, J., J. Biomed. Mater. Res. B 70, 37 (2004).Google Scholar
Pollington, S., van Noort, R., J. Dent. 40, 1006 (2012).CrossRefGoogle Scholar
Elsaka, S.E., Elnaghy, A.M., Dent. Mater. 32, 908 (2016).Google Scholar
Lien, W., Roberts, H.W., Platt, J.A., Vandewalle, K.S., Hill, T.J., Chu, T.G., Dent. Mater. 31, 928 (2015).CrossRefGoogle Scholar
Huang, X., Zheng, X., Zhao, G., Zhong, B., Zhang, X., Wen, G., Mater. Chem. Phys. 143, 845 (2014).CrossRefGoogle Scholar
Serbena, F., Mathias, I., Foerster, C., Zanotto, E.D., Acta Mater. 86, 216 (2015).CrossRefGoogle Scholar
Zhao, T., Qin, Y., Zhang, P., Wang, B., Yang, J.-F., Ceram. Int. 40, 12449 (2014).CrossRefGoogle Scholar
Wen, G., Zheng, X., Song, L., Acta Mater. 55, 3583 (2007).CrossRefGoogle Scholar
Domingos Teixeira, J., Pereira, M.A., Boehs, L., Siligardi, C., Cantavella, V., de Oliveira, A., Mater. Sci. Forum 775, 599 (2014).Google Scholar
Taruta, S., Sakata, M., Yamaguchi, T., Kitajima, K., Ceram. Int. 34, 75 (2008).CrossRefGoogle Scholar
Cheng, K., Wan, J., Liang, K., Mater. Lett. 39, 350 (1999).CrossRefGoogle Scholar
Uno, T., Kasuga, T., Nakajima, K., J. Am. Ceram. Soc. 74, 3139 (1991).CrossRefGoogle Scholar
Yang, H., Wu, S., Hu, J., Wang, Z., Wang, R., He, H., Mater. Des. 32, 1590 (2011).Google Scholar
Chaysuwan, D., Sirinukunwattana, K., Kanchanatawewat, K., Heness, G., Yamashita, K., Dent. Mater. J. 30, 358 (2011).CrossRefGoogle Scholar
Khani, V., Alizadeh, P., Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 54, 104 (2013).Google Scholar
Uno, T., Kasuga, T., Nakayama, S., Ikushima, A.J., J. Am. Ceram. Soc. 76, 539 (1993).CrossRefGoogle Scholar
Montazerian, M., Alizadeh, P., Yekta, B.E., J. Eur. Ceram. Soc. 28, 2693 (2008).CrossRefGoogle Scholar
Li, H.-C., Wang, D.-G., Meng, X.-G., Chen, C.-Z., Biointerphases 9, 031014 (2014).CrossRefGoogle Scholar
Kokubo, T., Ito, S., Shigematsu, M., Sakka, S., Yamamuro, T., J. Mater. Sci. 20, 2001 (1985).CrossRefGoogle Scholar
Kasuga, T., Nakajima, K., Clin. Mater. 4, 285 (1989).CrossRefGoogle Scholar
Liu, D.-M., Chou, H.-M., J. Mater. Sci. Mater. Med. 5, 7 (1994).CrossRefGoogle Scholar
Dittmer, M., Yamamoto, C.F., Bocker, C., Rüssel, C., Solid State Sci. 13, 2146 (2011).CrossRefGoogle Scholar
Hu, A., Li, M., Dali, D.M., Liang, K., Thermochim. Acta 437, 110 (2005).Google Scholar
Mirsaneh, M., Reaney, I.M., Hatton, P.V., James, P.F., J. Am. Ceram. Soc. 87, 240 (2004).Google Scholar
Mirsaneh, M., Reaney, I.M., James, P.F., Hatton, P.V., J. Am. Ceram. Soc. 89, 587 (2006).Google Scholar
Kanchanarat, N., Bandyopadhyay-Ghosh, S., Reaney, I.M., Brook, I.M., Hatton, P.V., J. Mater. Sci. 43, 759 (2008).CrossRefGoogle Scholar
Hamedani, M., Marghussian, V., Sarpoolaky, H., J. Non Cryst. Solids 382, 112 (2013).CrossRefGoogle Scholar
Pinckney, L.R., Beall, G.H., Andrus, R.L., J. Am. Ceram. Soc. 82, 2523 (1999).CrossRefGoogle Scholar
Peitl, O., Zanotto, E.D., Serbena, F.C., Hench, L.L., Acta Biomater. 8, 321 (2012).CrossRefGoogle Scholar
Xie, N., Bell, J., Kriven, W.M., J. Am. Ceram. Soc. 93, 2644 (2010).Google Scholar
Wu, J.P., Rawlings, R.D., Boccaccini, A.R., Dlouhy, I., Chlup, Z., J. Am. Ceram. Soc. 89, 2426 (2006).CrossRefGoogle Scholar
López-Esteban, S., Bartolome, J.F., Di, L.A., Esteban-Tejeda, L., Prado, C., Lopez-Piriz, R., Torrecillas, R., Moya, J.S., J. Mech. Behav. Biomed. Mater. 34, 302 (2014).CrossRefGoogle Scholar
Sung, Y.-M., J. Mater. Sci. Lett. 18, 1229 (1999).CrossRefGoogle Scholar
Ashizuka, M., Ishida, E., J. Mater. Sci. 32, 185 (1997).CrossRefGoogle Scholar
Molla, A.R., Kesavulu, C.R., Chakradhar, R.P.S., Tarafder, A., Mohanty, S.K., Rao, J.L., Karmakar, B., Biswas, S.K., J. Alloys Compd. 583, 498 (2014).CrossRefGoogle Scholar
Beall, G., J. Eur. Ceram. Soc. 29, 1211 (2009).CrossRefGoogle Scholar
Bernardo, E., Doyle, J., Hampshire, S., Ceram. Int. 34, 2037 (2008).CrossRefGoogle Scholar
Fu, L., Wu, C., Grandfield, K., Unosson, E., Chang, J., Engqvist, H., Xia, W., J. Eur. Ceram. Soc. 36, 3487 (2016).CrossRefGoogle Scholar
Beall, G., Int. J. Appl. Glass Sci. 5, 93 (2014).CrossRefGoogle Scholar
Quinn, G.D., Bradt, R.C., J. Am. Ceram. Soc. 90, 673 (2007).CrossRefGoogle Scholar
Beall, G., Chyung, K., Stewart, R.L., Donaldson, K.Y., Lee, H.L., Baskaran, S., Hasselman, D.P.H., J. Mater. Sci. 21, 2365 (1986).CrossRefGoogle Scholar
Rahaman, M.N., Yao, A., Bal, B.S., Garino, J.P., Ries, M.D., J. Am. Ceram. Soc. 90, 1965 (2007).Google Scholar
Fratzl, P., Weinkamer, R., Prog. Mater. Sci. 52, 1263 (2007).CrossRefGoogle Scholar
Munch, E., Launey, M.E., Alsem, D.H., Saiz, E., Tomsia, A.P., Ritchie, R.O., Science 322, 1516 (2008).CrossRefGoogle Scholar
Wegst, U.G., Bai, H., Saiz, E., Tomsia, A.P., Ritchie, R.O., Nat. Mater. 14, 23 (2015).CrossRefGoogle Scholar
Mayer, G., Science 310, 1144 (2005).Google Scholar
Bradt, R.C., Newnham, R.E., Biggers, J.V., Am. Mineral. 58, 727 (1973).Google Scholar
Smith, D.K., Newkirk, W., Acta Crystallogr. 18, 983 (1965).CrossRefGoogle Scholar
Becher, P.F., J. Am. Ceram. Soc. 74, 255 (1991).Google Scholar
Evans, A.G., J. Am. Ceram. Soc. 73, 187 (1990).CrossRefGoogle Scholar
Hannink, R.H., Kelly, P.M., Muddle, B.C., J. Am. Ceram. Soc. 83, 461 (2000).CrossRefGoogle Scholar
Apel, E., Deubener, J., Bernard, A., Höland, M., Müller, R., Kappert, H., J. Mech. Behav. Biomed. Mater. 1, 313 (2008).CrossRefGoogle Scholar
Sarno, R., Tomozawa, M., J. Mater. Sci. 30, 4380 (1995).CrossRefGoogle Scholar
Aksay, I., Trau, M., Manne, S., Honma, I., Science 273, 892 (1996).CrossRefGoogle Scholar
Shao, Y., Zhao, H.-P., Feng, X.-Q., Gao, H., J. Mech. Phys. Solids 60, 1400 (2012).Google Scholar
Song, F., Soh, A., Bai, Y., Biomaterials 24, 3623 (2003).Google Scholar
Rüssel, C., J. Non Cryst. Solids 219, 212 (1997).CrossRefGoogle Scholar
Albakry, M., Guazzato, M., Swain, M.V., J. Biomed. Mater. Res. B 71, 99 (2004).CrossRefGoogle Scholar
Denry, I.L., Baranta, G., Holloway, J.A., Gupta, P.K., J. Biomed. Mater. Res. B 64B, 70 (2003).CrossRefGoogle Scholar
Ashbee, K.H.G., J. Mater. Sci. 10, 911 (1975).CrossRefGoogle Scholar
Habelitz, S., Carl, G., Rüssel, C., Mater. Sci. Eng. A 307, 1 (2001).CrossRefGoogle Scholar
Habelitz, S., Carl, G., Russel, C., Marchetti, K., Roeder, E., Elfler, D., Hergt, R., Glass Sci. Technol. 70, 86 (1997).Google Scholar
Launey, M.E., Buehler, M.J., Ritchie, R.O., Annu. Rev. Mater. Res. 40, 25 (2010).CrossRefGoogle Scholar
Peterlik, H., Roschger, P., Klaushofer, K., Fratzl, P., Nat. Mater. 5, 52 (2006).CrossRefGoogle Scholar
Höland, W., Ritzberger, C., Apel, E., Rheinberger, V., Nesper, R., Krumeich, F., Monster, C., Eckert, H., J. Mater. Chem. 18, 1318 (2008).CrossRefGoogle Scholar
Beall, G., Karstetter, B., Rittler, H., J. Am. Ceram. Soc. 50, 181 (1967).CrossRefGoogle Scholar
Karstetter, B., Voss, R., J. Am. Ceram. Soc. 50, 133 (1967).CrossRefGoogle Scholar
Dejneka, M., Dutta, I., Smith, C., Int. J. Appl. Glass Sci. 5, 146 (2014).CrossRefGoogle Scholar
Davis, M.J., Int. J. Mater. Res. 99, 120 (2008).CrossRefGoogle Scholar
Serbena, F.C., Zanotto, E.D., J. Non Cryst. Solids 358, 975 (2012).CrossRefGoogle Scholar
Mastelaro, V.R., Zanotto, E.D., J. Non Cryst. Solids 247, 79 (1999).CrossRefGoogle Scholar
Supplementary material: PDF

Fu supplementary material

Table S1

Download Fu supplementary material(PDF)
PDF 91.1 KB