Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T21:26:47.209Z Has data issue: false hasContentIssue false

Native Defects in the Ternary Chalcopyrites

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Ternary-chalcopyrite crystals contain a variety of point defects—the most common of which are vacancies, antisite ions, and impurities. Usually these defects are isolated, but they can also appear as complexes involving two or more of the simple defects. Depending on the material, the concentrations of these defects may vary from a few hundred parts per billion to a few hundred parts per million. Many of the point defects in the ternary chalcopyrites have associated optical-absorption bands with significant oscillator strengths. It is these absorption features that become important when the crystals are exposed to intense laser beams during device operation. Even a small amount of absorption will seriously degrade the performance of the device if any of the wavelengths of the various propagating beams happen to overlap an absorption band. This phenomenon can be a problem for both second-harmonic-generator and optical-parametric-oscillator applications. In general the absorption leads to heating of the crystal and results in-thermal lensing (due to temperature dependence of the index of refraction) and dephasing of the beams, and it can ultimately lead to thermal fracturing of the crystal. Thus it is important to develop a fundamental understanding of the defect structure of the ternary-chalcopyrite crystals if they are to serve as the critical component in midinfrared frequency-conversion devices. Once the nature and behavior of the point defects are established, processes can be developed to remove the defects from the crystals either during the growth itself or during post-growth treatments.

Type
Emergence of Chalcopyrites as Nonlinear Optical Materials
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Weil, J.A., Bolton, J.R., and Wertz, J.E., Electron Paramagnetic Resonance (John Wiley & Sons, New York, 1994).Google Scholar
2.Spaeth, J-M., Niklas, J.R., and Bartram, R.H., Structural Analysis of Point Defects in Solids (Springer-Verlag, Berlin, 1992).CrossRefGoogle Scholar
3.Rakowsky, M.H., Kuhn, W.K., Lauderdale, W.J., Halliburton, L.E., Edwards, G.J., Scripsick, M.P., Schunemann, P.G., Pollak, T.M., Ohmer, M.C., and Hopkins, F.K., Appl. Phys. Lett. 64 (13) (1994) p. 1615.CrossRefGoogle Scholar
4.Halliburton, L.E., Edwards, G.J., Scripsick, M.P., Rakowsky, M.H., Schunemann, P.G., and Pollak, T.M., Appl. Phys. Lett. 66 (20) (1995) p. 2670.CrossRefGoogle Scholar
5.Giles, N.C., Halliburton, L.E., Schunemann, P.G., and Pollak, T.M., Appl. Phys. Lett. 66 (20) p. 1758.CrossRefGoogle Scholar
6.Setzler, S.D., Halliburton, L.E., Giles, N.C., Schunemann, P.G., and Pollak, T.M., in Infrared Applications of Semiconductors-Materials, Processing, and Devices, edited by Manasreh, M.O., Myers, T.H., and Julien, F.H. (Mater. Res. Soc. Symp. Proc. 450, Pittsburgh, 1997) p. 327.Google Scholar
7.Stevens, K.T., Setzler, S.D., Halliburton, L.E., Fernelius, N.C., Schunemann, P.G., and Pollak, T. M., in Infrared Applications of Semiconductors II, edited by Sivananthan, S., Manasreh, M.O., Miles, R.H., and McDaniel, D.L. Jr., (Mater. Res. Soc. Symp. Proc. 484, Pittsburgh, 1998).Google Scholar
8.Kiel, A., Solid State Commun. 15 (1974) p. 1021.CrossRefGoogle Scholar
9.Zapol, P., Pandey, R., Ohmer, M., and Gale, J., J. Appl. Phys. 79 (1996) p. 671.CrossRefGoogle Scholar
10.Brudnyi, V.N., Budnitskii, D.L., Krivov, M.A., Masagutova, R.V., Prochukhan, V.D., and Rud, Yu.V., Phys. Status Solidi A 50 (1978) p. 379.CrossRefGoogle Scholar
11.Averkieva, G.K., Grigoreva, V.S., Maltseva, I.A., Prochukhan, V.D., and Rud, Yu.V., Phys. Status Solidi A 39 (1977) p. 453.CrossRefGoogle Scholar
12.Rud, Yu.V., Semiconductors 28 (1994) p. 633.Google Scholar
13.McCrae, J.E. Jr., Gregg, M.R., Hengehold, R.L., Yeo, Y.K., Ostdiek, P.H., Ohmer, M.C., Schunemann, P.G., and Pollak, T.M., Appl. Phys. Lett. 64 (1994) p. 3142.CrossRefGoogle Scholar
14.Dietz, N., Tsveybak, I., Ruderman, W., Wood, G., and Bachmann, K.J., Appl. Phys. Lett. 65 (1994) p. 2759.CrossRefGoogle Scholar
15.Dietz, N., Busse, W., Gumlich, H.E., Ruderman, W., Tsveybak, I., Wood, G., and Bachmann, K.J., in Infrared Applications of Semiconductors-Materials, Processing, and Devices, edited by Manasreh, M.O., Myers, T.H., and Julien, F.H. (Mater. Res. Soc. Symp. Proc. 450, Pittsburgh, 1997) p. 333.Google Scholar
16.Rud, Yu.V., Yu, V., Ohmer, M.C., and Schunemann, P.G., in Infrared Applications of Semiconductors-Materials, Processing, and Devices, edited by Manasreh, M.O., Myers, T.H., and Julien, F.H. (Mater. Res. Soc. Symp. Proc. 450, Pittsburgh, 1997) p. 339.Google Scholar
17.Iseler, G.W., Kildal, H., and Menyuk, N., J. Electron. Mater. 7 (1978) p. 737.CrossRefGoogle Scholar
18.Halliburton, L.E., Edwards, G.J., Schunemann, P.G., and Poilak, T.M., J. Appl. Phys. 77 (1995) p. 435.CrossRefGoogle Scholar
19.McCrae, J.E., Hengehold, R.L., Yeo, Y.K., Ohmer, M.C., and Schunemann, P.G., Appl. Phys. Lett. 70 (1997) p. 455.CrossRefGoogle Scholar
20.Aufgang, J.B., Labrie, D., Olson, K., Paton, B., Simpson, A.M., Iseler, G.W., and Borshchevsky, A., Semicond. Sci. Technol. 12 (1997) p. 1257.CrossRefGoogle Scholar