Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-20T00:01:49.799Z Has data issue: false hasContentIssue false

Nanowires by Step Decoration

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Recent advances in the control of thin films and surfaces have brought an intriguing question within reach: Is it possible to tailor the electronic properties of solids by controlling them layer by layer or row by row? Customized molecules are commonplace in biochemistry. Can the same idea be brought to bear on solids and electronic materials? Electronic properties of semiconductor devices have been controlled by hetero-structures, quantum wells, and super-lattices. Magnetism as a cooperative phenomenon lends itself to manipulation in small structures, where neighbor atoms can be replaced systematically by species with stronger or weaker magnetism. In fact, a class of magnetic/nonmagnetic multilayers termed spin valves has recently been introduced into commercial read heads for magnetically stored data. The optimum thickness of their active region lies in the single-digit-nanometer regime.

The smallest nanostructures may be viewed as objects consisting only of interfaces with no bulk behind them. More typically, single-digit-nanometer dimensions are sufficient for realizing the benefits of structuring (e.g., operating a quantum-well device at room temperature). This regime is difficult to reach with lithography methods, particularly when macroscopic amounts are to be fabricated. Self-assembly becomes the method of choice.

Type
Novel Methods of Nanoscale Wire Formation
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Himpsel, F.J., Ortega, J.E., Mankey, G.J., and Willis, R.F., Adv. Phys. 47 (1998) p. 511.CrossRefGoogle Scholar
2.Himpsel, F.J., Jung, T., and Seidler, P.F., IBM J. Res. Dev. 42 (1998) p. 33.CrossRefGoogle Scholar
3.Röder, H., Hahn, E., Brune, H., Bucher, J.-P., and Kern, K., Nature 366 (1993) p. 141.CrossRefGoogle Scholar
4.Piraux, L., George, J.M., Despres, J.F., Leroy, C., Ferain, E., Legras, R., Ounadjela, K., and Fert, A., Appl. Phys. Lett. 65 (1994) p. 2484; A. Blondel, J.P. Meier, B. Doudin, and J.-Ph. Ansermet, Appl. Phys. Lett. 65 (1994) p. 3019; K. Liu, K. Nagodawithana, P.C. Searson, and C.L. Chien, Phys. Rev. B 51 (1995) p. 7381.CrossRefGoogle Scholar
5.Routkevitch, D., Tager, A.A., Haruyama, J., Almawlawi, D., Moskovits, M., and Xu, J.M., IEEE Trans. Electron Devices 43 (1996) p. 1646; Z.B. Zhang, J.Y. Ying, and M.S. Dresselhaus, J. Mater. Res. 13 (1998) p. 1745.CrossRefGoogle Scholar
6.Morales, A.M. and Lieber, C.M., Science 279 (1998) p. 208; G. Che, B.B. Lakshmi, C.R. Martin, E.R. Fisher, and R.S. Ruoff, Chem. Mater. 10 (1998) p. 260.CrossRefGoogle Scholar
7.Himpsel, F.J., Mo, Y.W., Jung, T., Ortega, J.E., Mankey, G.J., and Willis, R.F., Superlattices Microstruct. 15 (1994) p. 237.CrossRefGoogle Scholar
8.Jung, T., Schlittler, R., Gimzewski, J.K., and Himpsel, F.J., Appl. Phys. A 61 (1995) p. 467.CrossRefGoogle Scholar
9.Petroff, P.M., Ultramicroscopy 31 (1989) p. 67.CrossRefGoogle Scholar
10.Paunov, M. and Bauer, E., Appl. Phys. A 44 (1987) p. 201; M. Mundschau, E. Bauer, and W. Swiech, J. Appl. Phys. 65 (1989) p. 581.CrossRefGoogle Scholar
11.Mo, Y.W. and Himpsel, F.J., Phys. Rev. B 50 (1994) p. 7868.CrossRefGoogle Scholar
12.Petrovykh, D.Y., Himpsel, F.J., and Jung, T., Surf. Sci. 407 (1998) p. 189; D.Y. Petrovykh, F.J. Himpsel, and T. Jung (private communication).CrossRefGoogle Scholar
13.Jung, T., Mo, Y.W., and Himpsel, F.J., Phys. Rev. Lett. 74 (1995) p. 1641.CrossRefGoogle Scholar
14.de la Figuera, J., Huerta-Garnica, M.A., Prieto, J.E., Ocal, C., and Miranda, R., Appl. Phys. Lett. 66 (1995) p. 1006; J. Shen, R. Skomski, M. Klaua, H. Jenniches, S. Sundar Manoharan, and J. Kirschner, Phys. Rev. B 56 (1997) p. 2340.CrossRefGoogle Scholar
15.Jung, T., Himpsel, F.J., Schlittler, R.R., and Gimzewski, J.K., in Scanning Probe Microscopy, Analytical Methods, Chapter 2, edited by Wiesendanger, R. (Springer, Berlin, 1998) p. 11.CrossRefGoogle Scholar
16.Viernow, J., Petrovykh, D.Y., Kirakosian, A., Lin, J.-L., Men, F.K., Henzler, M., and Himpsel, F.J., Phys. Rev. B 59 (1999) p. 10356.CrossRefGoogle Scholar
17.Viernow, J., Lin, J.-L., Petrovykh, D.Y., Leibsle, F.M., Men, F.K., and Himpsel, F.J., Appl. Phys. Lett. 72 (1998) p. 948.CrossRefGoogle Scholar
18.Lin, J.-L., Petrovykh, D.Y., Viernow, J., Men, F.K., Seo, D.J., and Himpsel, F.J., J. Appl. Phys. 84 (1998) p. 255.CrossRefGoogle Scholar
19.Williams, E.D. and Bartelt, N.C., Science 251 (1991) p. 393.CrossRefGoogle Scholar
20.Viernow, J., Petrovykh, D.Y., Men, F.K., Kirakosian, A., Lin, J.-L., and Himpsel, F.J., Appl. Phys. Lett. 74 (1999) p. 2125.CrossRefGoogle Scholar
21.Petrovykh, D.Y., Viernow, J., Lin, J.-L., Leibsle, F.M., Men, F.K., Kirakosian, A., and Himpsel, F.J., J. Vac. Sci. Technol., A 17 (1999) p. 1415.CrossRefGoogle Scholar
22.Rauscher, H., Jung, T.A., Lin, J.-L., Kirakosian, A., and Himpsel, F.J., Chem. Phys. Lett. 303 (1999) p. 363; J.-L. Lin, H. Rauscher, A. Kirakosian, and F.J. Himpsel (unpublished).CrossRefGoogle Scholar
23.Celotta, R., Gupta, R., Scholten, R.E., and McClelland, J.J., J. Appl. Phys. 79 (1996) p. 6079.CrossRefGoogle Scholar
24.Tersoff, J., Teichert, C., and Lagally, M.G., Phys. Rev. Lett. 76 (1996) p. 1675; C. Teichert, M.G. Lagally, L.J. Peticolas, J.C. Bean, and J. Tersoff, Phys. Rev. B 53 (1996) p. 16334; T.I. Kamins and R.S. Williams, Appl. Phys. Lett. 71 (1997) p. 1201.CrossRefGoogle Scholar
25.Nötzel, R., Temmyo, J., and Tamamura, T., Nature 369 (1994) p. 131.CrossRefGoogle Scholar
26.Park, M., Harrison, C., Chaikin, P.M., Register, R.A., and Adamson, D.A., Science 276 (1997) p. 1401.CrossRefGoogle Scholar
27.Li, A.H., Liu, F., and Lagally, M.G., Bull. Am. Phys. Soc. 44 (1999) p. 1714.Google Scholar
28. For an overview of ultrahigh-density recording technologies, see Kryder, M.H., MRS Bull. 21 (9) (1996) p. 17.CrossRefGoogle Scholar
29.Boland, J.J. and Weaver, J.H., Phys. Today 51 (8) (1998) p. 34; R. Younkin, K.K. Berggren, K.S. Johnson, M. Prentiss, D.C. Ralph, and C.M. Whitesides, Appl. Phys. Lett. 71 (1997) p. 1261.CrossRefGoogle Scholar
30.Shen, T.-C., Wang, C., Abeln, G.C., Tucker, J.R., Lyding, J.W., Avouris, Ph., and Walkup, R.E., Science 268 (1995) p. 1590; D.P. Adams, T.M. Mayers, B.S. Swartzentruber, Appl. Phys. Lett. 68 (1996) p. 2210; H. Dai, N. Franklin, and J. Han, Appl. Phys. Lett. 73 (1998) p. 1508.CrossRefGoogle Scholar
31.Sun, Shouheng and Murray, C.B., J. Appl. Phys. 85 (1999) p. 4325.CrossRefGoogle Scholar