Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T13:34:14.289Z Has data issue: false hasContentIssue false

Nanotube responsive materials

Published online by Cambridge University Press:  31 January 2011

Chaminda Jayasinghe
Affiliation:
Materials Engineering Department, University of Cincinnati, OH 45221, USA; [email protected].
Weifeng Li
Affiliation:
School of Dynamic Systems, University of Cincinnati, OH 45221, USA; [email protected].
Yi Song
Affiliation:
Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, OH 45221, USA; at [email protected].
Jandro L. Abot
Affiliation:
The Catholic University of America, Washington, DC 20064, USA; [email protected].
Vesselin N. Shanov
Affiliation:
School of Energy, Environmental, Biological and Medical Engineering, University of Cincinnati, OH 45221, USA; [email protected].
Svitlana Fialkova
Affiliation:
Center for Advanced Materials and Smart Structures, North Carolina A&T University, Greensboro, NC 27411, USA; [email protected].
Sergey Yarmolenko
Affiliation:
Center for Advanced Materials and Smart Structures, North Carolina A&T University, Greensboro, NC, 27411, USA; [email protected].
Surya Sundaramurthy
Affiliation:
University of Cincinnati, OH 45221, USA; [email protected].
Ying Chen
Affiliation:
Materials Engineering Department, University of Cincinnati, OH 45221, USA; e-mail [email protected].
Wondong Cho
Affiliation:
Chemical and Materials Engineering Department, University of Cincinnati, OH 45221, USA; e-mail [email protected].
Supriya Chakrabarti
Affiliation:
Ge Li
Affiliation:
General Nano LLC, Cincinnati, OH 45206, USA; [email protected].
Yeoheung Yun
Affiliation:
North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; [email protected].
Mark J. Schulz
Affiliation:
School of Dynamic Systems, University of Cincinnati, OH 45221-0072, USA; [email protected].
Get access

Abstract

Individual nanotubes made of carbon, boron nitride, iron, silicon, or other materials have properties such as high strength, toughness, electrical and thermal conductivity, and light weight that cannot be matched by conventional materials. Nanotubes also change their properties in response to external fields and change one type of energy into another, which are useful for design. This article explores three main steps in exploiting responsive materials based on nanotubes: nanotube synthesis, macroscale material fabrication, and incorporation into device structures for novel applications. Nanotubes are always synthesized as individual particles in the form of powders, smoke particles, or aligned forests. To be industrially important, nanotubes generally must be processed to form derivative materials such as functionalized/coated powders and forests and macroscale intermediate materials such as sheets, ribbon, and yarn. The processed nanotubes are then used to develop responsive materials and devices that are able to resist, react to, or generate energy from their environment. This article provides background information and ideas on how to develop nanotube responsive materials for everyday use.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mallik, N., Abot, J., Song, Y., Maheshwari, G., Cho, W., Head, E., Dadhania, M., Li, W., Shanov, V., Jayasinghe, C., Salunke, P., Li, G., Hurd, D., Yun, Y., Yarmolenko, S., Sankar, J., Phillips, P., Komoroski, R.A., Chu, W.-J., Bhattacharya, A., Watts, N., Schulz, M.J., in Carbon Nanotubes: Synthesis, Properties and Applications, Umeno, M., Somani, P.R., Eds. (Applied Science Innovations, India, 2009).Google Scholar
2.Schulz, M.J., Kelkar, A., Sundaresan, M., Nanoengineering of Structural, Functional and Smart Materials (CRC Press, NY, 2006).Google Scholar
3.Jorio, A., Dresselhaus, G., Dresselhaus, M.S., Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties (Springer-Verlag, NY, 2008).CrossRefGoogle Scholar
4. Southwest NanoTechnologies, CNT synthesis using a fluidized bed: http://swentnano.com/best/index.php.Google Scholar
5. Nanolab, CNT and BuckyPaper: www.nano-lab.com/buckypaper.html.Google Scholar
6. Florida State University, buckypaper development: www.buckypaper.com/.Google Scholar
7. Nanocomp Technologies, floating catalyst method: www.nanocomptech.com/.Google Scholar
8.McKeea, G.S.B., Decka, C.P., Vecchio, K.S., Carbon 47, 8 (2009).Google Scholar
9. General Nano LLC, nanotube materials producer: www.generalnanollc.com.Google Scholar
10. University of Cincinnati, Nanoworld and Smart Materials and Devices Laboratory: www.min.uc.edu/nanoworldsmart.Google Scholar
11.Wang, W., Kunwar, S., Huang, J.Y., Wang, D.Z., Ren, Z.F., Nanotechnology 16, (2005).Google Scholar
12.Zhou, D., Anoshkina, E.V., Chow, L., Chai, G., Carbon 44 (2006).Google Scholar
13.Ishigami, M., Aloni, S., Zettl, A., in Scanning Tunneling Microscopy/Spectroscopy and Related Techniques; 12th International Conf., Koenraad, P.M., Kemerink, M., Eds. (Eindhoven, The Netherlands, 2003).Google Scholar
14.Smith, M.W., Jordan, K.C., Park, C., Kim, J.-W., Lillehei, P.T., Crooks, R., Harrison, J.S., Nanotechnology 20, 505604 (2009).CrossRefGoogle Scholar
15.Gogotsi, Y., Libera, J.A., Yoshimura, M., MRS Bull. 15 (12), 2591 (2000).Google Scholar
16.Schulz, M.J., Shanov, V.N., Yeoheung, Y., Nanomedicine Design of Particles, Sensors, Motors, Implants, Robots, and Devices (Artech House Publishers, Norwood, MA, 2009).Google Scholar
17.Rao, C.N.R., Govindaraj, A., Adv. Mater. 21, 42 (2009).CrossRefGoogle Scholar
18.Bando, Y., Hu, J.Q., Yin, L.W., Ye, C.H., Microsc Microanal. 13 (Suppl. 2) (2007).CrossRefGoogle Scholar
19. Inorganic Nanostructured Materials Group, Tsukuba, Ibaraki, Japan: www.nims.go.jp/synthesis/topics-e.html.Google Scholar
20.Pan, H., Li, J., Feng, Y.P., Nanoscale Res. Lett. 4, 153 (2009).Google Scholar
21.Ericson, L.M., Fan, H., Peng, H., Davis, V.A., Zhou, W., Sulpizio, J., Wang, Y., Booker, R., Vavro, J., Guthy, C., Nicholas, A., Parra-Vasquez, G., Kim, M.J., Ramesh, S., Saini, R.K., Kittrell, C., Lavin, G., Schmidt, H., Adams, W., Billups, W.E., Pasquali, M., Hwang, W.-F., Hauge, R.H., Fischer, J.E., Smalley, R.E., Science. 305, 5689 (2004).CrossRefGoogle Scholar
22.Li, Y., Kinloch, I., Windle, A., Science 304, 5668 (2004).CrossRefGoogle Scholar
23.Zhang, X., Jiang, K., Feng, C., Liu, P., Zhang, L., Kong, J., Zhang, T., Li, Q., Fan, S., Adv. Mater. 18 (2006).Google Scholar
24.Zhang, M., Atkinson, K.R., Baughman, R.H., Science 306, 5700 (2004).Google Scholar
25.Atkinson, K.R., Hawkins, S.C., Huynh, C., Skourtis, C., Dai, J., Zhang, M., Fang, S.L., Zakhidov, A.A., Lee, S.B., Aliev, A.E., Williams, C.D., Baughman, R.H., Phys. B 394, 2 (2007).CrossRefGoogle Scholar
26.Abot, J.L., Song, Y., Sri Vatsavaya, M., Medikonda, S., Kier, Z., Jayasinghe, C., Rooy, N., Shanov, V.N., Schulz, M.J., Compos. Sci. Technol. 70 (7), 1113 (2010)CrossRefGoogle Scholar
27.Zhang, W., Sakalkar, V., Koratkar, N., Appl. Phys. Lett. 91, 133102 (2007).CrossRefGoogle Scholar
28.Schulz, M.J., Sundaramurthy, S., Mullapudi, L., Yin, J., Shanov, V., Hurd, D., Yarmolenko, S., Fialkova, S., Wagner, W., Application of Carbon Nanotube Fiber for In-Body Biomdedical Devices (University of Cincinnati, OH, 2010)Google Scholar
29.Qu, L., Dai, L., Stone, M., Xia, Z., Wang, Z.L., Science 322 (2008).CrossRefGoogle Scholar
30.Baughman, R.H., Cui, C., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., DeRossi, D., Rinzler, A.G., Jaschinski, O., Roth, S., Kertesz, M., Science 284 (1999).CrossRefGoogle Scholar
31.Xiao, L., Chen, Z., Feng, C., Liu, L., Bai, Z.-Q., Wang, Y., Qian, L., Zhang, Y., Li, Q., Jiang, K., Fan, S., Nano Lett. 8, 12 (2008).Google Scholar
32.Li, G., Chakrabarti, S., Schulz, M., Shanov, V., J. Mater. Res. 24, 9 (2009).Google Scholar
33. National Science Foundation, Revolutionizing Metallic Biomaterials: http://erc.ncat.edu.Google Scholar
34.Mirfakhrai, T., Oh, J., Kozlov, M., Fok, E.C.W., Zhang, M., Fang, S., Baughman, R.H., Madden, J.D.W., Smart Mater. Struct. 16 (2007).CrossRefGoogle Scholar
35.Aliev, A.E., Oh, J., Kozlov, M.E., Kuznetsov, A.A., Fang, S., Fonseca, A.F., Ovalle, R., Lima, M.D., Haque, M.H., Gartstein, Y.N., Zhang, M., Zakhidov, A.A., Baughman, R.H., Science 323, 5921 (2009).CrossRefGoogle Scholar
36.Lu, S., Ahir, S., Velasco, V., King, B., Xu, P., Terentjev, E.M., Panchapakesan, B., J. Micro-Nano Mechatron 5, 29 (2009).CrossRefGoogle Scholar
37.Weifeng, L., Sundaramurthy, S., Shanov, V., Schulz, M., Carbon Nanotube Thread for Distributed Sensing (University of Cincinnati, OH, 2010).Google Scholar
38.Wei, J., Jia, Y., Shu, Q., Gu, Z., Wang, K., Zhuang, D., Zhang, G., Wang, Z., Luo, J., Cao, A., Wu, D., Nano Lett. 7, 8 (2007).Google Scholar
39.Dresselhaus, M.S., Chen, G., Ren, Z.F., McEnaney, K., Dresselhaus, G., Fleurial, J.P., Mater. Res. Soc. Symp. Proc. 1166 (2009).Google Scholar
40.Lashmore, D.S., Mann, J., White, B., White, M., Degtiarov, D., Nanostructured Material-Based Thermoelectric Generators, U.S. Patent: www.faqs.org/patents/app/20090044848#ixzz0b0RWELRa.Google Scholar
41.Popa-Simil, L., Pseudo-Capacitor Structure for Direct Nuclear Energy Conversion, MRS Symposium, 1100-JJ04–14 (2008).CrossRefGoogle Scholar
42.Macak, J.M., Tsuchiya, H., Ghikov, A., Yasada, K., Hahn, R., Bauer, S., Schmuki, P., Curr Opin. Solid State Mater. Sci. 11 (2007).CrossRefGoogle Scholar
43.Simon, P., Gogotsi, Y., Nat. Mater. 7, 845 (2008).CrossRefGoogle Scholar
44.Morin, S.A., Bierman, M.J., Tong, J., Jin, S., Science 328, 476 (2010).CrossRefGoogle Scholar
45.Freitas, R.A., Nanomedicine Volume I: Basic Capabilities (Landes Bioscience TX, 1999).Google Scholar
46.Freitas, R.A., Nanomedicine Volume IIA: Biocompatibility (Landes Bioscience TX, 2003).CrossRefGoogle Scholar