Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T21:56:35.389Z Has data issue: false hasContentIssue false

Nanoscale sensing and imaging in biology using the nitrogen-vacancy center in diamond

Published online by Cambridge University Press:  06 February 2013

L.T. Hall
Affiliation:
School of Physics, University of Melbourne, Australia; [email protected]
D.A. Simpson
Affiliation:
School of Physics, University of Melbourne, Australia; [email protected]
L.C.L. Hollenberg
Affiliation:
School of Physics, University of Melbourne, Australia; [email protected]
Get access

Abstract

The use of the nitrogen-vacancy (NV) center in diamond as a single spin sensor or magnetometer has attracted considerable interest in recent years because of its unique combination of sensitivity, nanoscale resolution, and room temperature operation. These properties, together with long-term photostability of the NV fluorescence and the inherent biocompatibility of diamond, make the NV system ideal for applications in biology. This article focuses on the role of the NV center in biological applications from optical tracking to nanoscale sensing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gruber, A., Dräbenstedt, A., Tietz, C., Fleury, L., Wrachtrup, J., Von Borczyskowski, C., Science 276, 2012 (1997).CrossRefGoogle Scholar
Balasubramanian, G., Neumann, P., Twitchen, D., Markham, M., Kolesov, R., Mizuochi, N., Isoya, J., Achard, J., Beck, J., Tissler, J., Jacques, V., Hemmer, P.R., Jelezko, F., Wrachtrup, J., Nat. Mater. 8, 383 (2009).CrossRefGoogle Scholar
Vaijayanthimala, V., Tzeng, Y.K., Chang, H.C., Li, C.L., Nanotechnology 20, 425103 (2009).CrossRefGoogle Scholar
Mohan, N., Chen, C.-S., Hsieh, H.-H., Wu, Y.-C., Chang, H.-C., Nano Lett. 10, 3692 (2010).CrossRefGoogle Scholar
Fang, C.-Y., Vaijayanthimala, V., Cheng, C.-A., Yeh, S.-H., Chang, C.-F., Li, C.-L., Chang, H.-C., Small 7, 3363 (2011).CrossRefGoogle Scholar
Balasubramanian, G., Chan, I.Y., Kolesov, R., Al-Hmoud, M., Tisler, J., Shin, C., Kim, C., Wojcik, A., Hemmer, P.R., Krueger, A., Hanke, T., Leitenstorfer, A., Bratschitsch, R., Jelezko, F., Wrachtrup, J., Nature 455, 648 (2008).CrossRefGoogle Scholar
Maze, J.R., Stanwix, P.L., Hodges, J.S., Hong, S., Taylor, J.M., Cappellaro, P., Jiang, L., Dutt, M.V.G., Togan, E., Zibrov, A.S., Yacoby, A., Walsworth, R.L., Lukin, M.D., Nature 455, 644 (2008).CrossRefGoogle Scholar
Schoenfeld, R.S., Harneit, W., Phys. Rev. Lett. 106, 030802 (2011).CrossRefGoogle Scholar
Steinert, S., Dolde, F., Neumann, P., Aird, A., Naydenov, B., Balasubramanian, G., Jelezko, F., Wrachtrup, J., Rev. Sci. Instrum. 81, 043705 (2010).CrossRefGoogle Scholar
Pham, L.M., Sage, D.L., Stanwix, P.L., Yeung, T.K., Glenn, D., Trifonov, A., Cappellaro, P., Hemmer, P.R., Lukin, M.D., Park, H., Yacoby, A., Walsworth, R.L., New J. Phys. 13, 045021 (2011).CrossRefGoogle Scholar
Hall, L.T., Hill, C.D., Cole, J.H., Hollenberg, L.C.L., Phys. Rev. B 82, 045208 (2010).CrossRefGoogle Scholar
Acosta, V.M., Bauch, E., Jarmola, A., Zipp, L.J., Ledbetter, M.P., Budker, D., Appl. Phys. Lett. 97, 174104 (2010).CrossRefGoogle Scholar
Cole, J.H., Hollenberg, L.C.L., Nanotechnology 20, 10 (2009).CrossRefGoogle Scholar
Hall, L.T., Cole, J.H., Hill, C.D., Hollenberg, L.C.L., Phys. Rev. Lett. 103, 220802 (2009).CrossRefGoogle Scholar
Bradac, C., Gaebel, T., Naidoo, N., Sellars, M.J., Twamley, J., Brown, L.J., Barnard, A.S., Plakhotnik, T., Zvyagin, A.V., Rabeau, J.R., Nat. Nano 5, 345 (2010).CrossRefGoogle Scholar
Tisler, J., Balasubramanian, G., Naydenov, B., Kolesov, R., Grotz, B., Reuter, R., Boudou, J.P., Curmi, P.A., Sennour, M., Thorel, A., Borsch, M., Aulenbacher, K., Erdmann, R., Hemmer, P.R., Jelezko, F., Wrachtrup, J., ACS Nano 3, 1959 (2009).CrossRefGoogle Scholar
Faklaris, O., Garrot, D., Joshi, V., Boudou, J.P., Sauvage, T., Curmi, P.A., Treussart, F., J. Eur. Opt. Soc. Rapid Public. 4, 09032 (2009).CrossRefGoogle Scholar
Fu, C.C., Lee, H.Y., Chen, K., Lim, T.S., Wu, H.Y., Lin, P.K., Wei, P.K., Tsao, P.H., Chang, H.C., Fann, W., Proc. Natl. Acad. Sci. U.S.A. 104, 727 (2007).CrossRefGoogle Scholar
Chang, Y.R., Lee, H.Y., Chen, K., Chang, C.C., Tsai, D.S., Fu, C.C., Lim, T.S., Tzeng, Y.K., Fang, C.Y., Han, C.C., Chang, H.C., Fann, W., Nat. Nano 3, 284 (2008).CrossRefGoogle Scholar
Faklaris, O., Garrot, D., Joshi, V., Druon, F., Boudou, J.P., Sauvage, T., Georges, P., Curmi, P.A., Treussart, F., Small 4, 2236 (2008).CrossRefGoogle Scholar
Faklaris, O., Joshi, V., Irinopoulou, T., Tauc, P., Sennour, M., Girard, H., Gesset, C., Arnault, J.C., Thorel, A., Boudou, J.P., Curmi, P.A., Treussart, F., ACS Nano 3, 3955 (2009).CrossRefGoogle Scholar
Chernobrod, B.M., Berman, G.P., J. Appl. Phys. 97, 3 (2005).CrossRefGoogle Scholar
Degen, C.L., Appl. Phys. Lett. 92, 243111 (2008).CrossRefGoogle Scholar
Taylor, J.M., Cappellaro, P., Childress, L., Jiang, L., Budker, D., Hemmer, P.R., Yacoby, A., Walsworth, R., Lukin, M.D., Nat. Phys. 4, 810 (2008).CrossRefGoogle Scholar
Budker, D., Romalis, M., Nat. Phys. 3, 227 (2007).CrossRefGoogle Scholar
Rabeau, J.R., Stacey, A., Rabeau, A., Prawer, S., Jelezko, F., Mirza, I., Wrachtrup, J., Nano Lett. 7, 3433 (2007).CrossRefGoogle Scholar
de Lange, G., Wang, Z.H., Ristè, D., Dobrovitski, V.V., Hanson, R., Science 330, 60 (2010).CrossRefGoogle Scholar
Naydenov, B., Dolde, F., Hall, L.T., Shin, C., Fedder, H., Hollenberg, L.C.L., Jelezko, F., Wrachtrup, J., Phys. Rev. B 83, 081201 (2011).CrossRefGoogle Scholar
Ryan, C.A., Hodges, J.S., Cory, D.G., Phys. Rev. Lett. 105, 200402 (2010).CrossRefGoogle Scholar
de Lange, G., Ristè, D., Dobrovitski, V.V., Hanson, R., Phys. Rev. Lett. 106, 080802 (2011).CrossRefGoogle Scholar
Meriles, C.A., Jiang, L., Goldstein, G., Hodges, J.S., Maze, J., Lukin, M.D., Cappellaro, P., J. Chem. Phys. 133, 124105 (2010).CrossRefGoogle Scholar
Zhao, N., Hu, J.-L., Ho, S.-W., Wan, J.T.K., Liu, R.B., Nat. Nano 6, 242 (2011).CrossRefGoogle Scholar
Hall, L.T., Beart, G.C.G., Thomas, E.A., Simpson, D.A., McGuinness, L.P., Cole, J.H., Manton, J.H., Scholten, R.E., Jelezko, F., Wrachtrup, J., Petrou, S., Hollenberg, L.C.L., Sci. Rep. 2 (2012).Google Scholar
Hall, L.T., Hill, C.D., Cole, J.H., Städler, B., Caruso, F., Mulvaney, P., Wrachtrup, J., Hollenberg, L.C.L., Proc. Natl. Acad. Sci. 107, 18777 (2010).CrossRefGoogle Scholar
Reimhult, E., Kumar, K., Trends Biotechnol. 26, 82 (2008).CrossRefGoogle Scholar
Ide, T., Takeuchi, Y., Aoki, T., Yanagida, T., Jpn. J. Physiol. 52, 429 (2002).CrossRefGoogle Scholar
Baaken, G., Sondermann, M., Schlemmer, C., Ruhe, J., Behrends, J.C., Lab Chip 8, 938 (2008).CrossRefGoogle Scholar
Lundstrom, K., Cell. Mol. Life Sci. 63, 2597 (2006).CrossRefGoogle Scholar
Specht, C.G., Williams, O.A., Jackman, R.B., Schoepfer, R., Biomaterials 25, 4073 (2004).CrossRefGoogle Scholar
McGuinness, L.P., Yan, Y., Stacey, A., Simpson, D.A., Hall, L.T., Maclaurin, D., Prawer, S., Mulvaney, P., Wrachtrup, J., Caruso, F., Scholten, R.E., Hollenberg, L.C.L., Nat. Nano 6, 358 (2011).CrossRefGoogle Scholar
Meinhardt, T., Lang, D., Dill, H., Krueger, A., Adv. Funct. Mater. 21, 494 (2011).CrossRefGoogle Scholar